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Toward nanofluids of ultra-high thermal conductivity
Liqiu Wang*†, Jing Fan†

Abstract

The assessment of proposed origins for thermal conductivity enhancement in nanofluids signifies the importance
of particle morphology and coupled transport in determining nanofluid heat conduction and thermal conductivity.
The success of developing nanofluids of superior conductivity depends thus very much on our understanding and
manipulation of the morphology and the coupled transport. Nanofluids with conductivity of upper Hashin-
Shtrikman (H-S) bound can be obtained by manipulating particles into an interconnected configuration that
disperses the base fluid and thus significantly enhancing the particle-fluid interfacial energy transport. Nanofluids
with conductivity higher than the upper H-S bound could also be developed by manipulating the coupled
transport among various transport processes, and thus the nature of heat conduction in nanofluids. While the
direct contributions of ordered liquid layer and particle Brownian motion to the nanofluid conductivity are
negligible, their indirect effects can be significant via their influence on the particle morphology and/or the
coupled transport.

Introduction
Nanofluids are a new class of fluids engineered by dis-
persing nanometer-size structures (particles, fibers,
tubes, droplets, etc.) in base fluids. The very essence of
nanofluids research and development is to enhance fluid
macroscopic and system-scale properties through
manipulating microscopic physics (structures, properties,
and activities) [1,2]. One of such properties is the ther-
mal conductivity that characterizes the strength of heat
conduction and has become a research focus of nano-
fluid society in the last decade [1-9].
The importance of high-conductivity nanofluids cannot

be overemphasized. The success of effectively developing
such nanofluids depends very much on our understanding
of mechanism responsible for the significant enhancement
of thermal conductivity. Both static and dynamic reasons
have been proposed for experimental finding of significant
conductivity enhancement [1-9]. The former includes the
nanoparticle morphology [10,11] and the liquid layering at
the liquid-particle interface [12-17]. The latter contains
the coupled (cross) transport [18-20] and the nanoparticle
Brownian motion [21-26]. Here, the effect of particle mor-
phology contains those from the particle shape, connectiv-
ity among particles (including and generalizing the

nanoparticle clustering/aggregating in the literature
[10,11]), and particle distribution in nanofluids. This short
review aims for a concise assessment of these contribu-
tions, thus identifying the future research needs toward
nanofluids of high thermal conductivity. The readers are
referred to, for example, [1-9] for state-of-the-art exposi-
tions of major advances on the synthesis, characterization,
and application of nanofluids.

Static mechanisms
Morphology
The nanoparticle morphology in nanofluids can vary
from a well-dispersed configuration in base fluids to a
continuous phase of interconnected configuration. Such
a morphology variation will change nanofluid’s effective
thermal conductivity significantly [27-32], a phenom-
enon credited to the particle clustering/aggregating in
the literature [1-9]. This appears obvious because the
nanofluid’s effective conductivity stems mainly from
the contribution of continuous phase that constitutes
the continuous path for thermal flow [27,28]. Although
particle clustering/aggregating offers a way of changing
particle morphology, it is not necessarily an effective
means. The research should thus focus not only on the
clustering/aggregating, but also on the general ways of
varying morphology.
Given that nanofluid thermal conductivity depends

heavily on the particle morphology, its lower and upper
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bounds can be completely determined by the volume
fractions and conductivities of the two phases. These
bounds have been well developed based on the classical
effective-medium theory and termed as the Hashin-
Shtrikman (H-S) bounds [33],
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Here kp, kf, and ke are the conductivities of particle, base
fluid, and nanofluid, respectively, and � is the particle
volume fraction. For the case of kp/kf ≥1, Equations (1)
and (2) give the lower and the upper bounds for nanofluid
effective thermal conductivity, corresponding to the two
limiting morphologies where the liquid serves as the con-
tinuous phase for the lower bound and the particle dis-
perses the liquid for the upper bound, respectively. When
kp/kf ≤1, their roles are interchanged, so that Equations (1)
and (2) provide the upper and the lower bounds, respec-
tively. Therefore, the upper bound always takes a config-
uration (morphology) where the continuous phase is made
of the higher-conductivity material.
The morphology dependence of nanofluid’s conductivity

has been recently examined in detail by either of the two
approaches: the constructal approach [1,2,29-32] and the
scaling-up by the volume average [1,2,27,28]. Such studies
not only confirm the features captured in the H-S bounds
but also uncover the microscopic mechanism responsible
for the morphology dependence of nanofluid’s conductiv-
ity. As higher-conductivity particles interconnect each
other and disperse the lower-conductivity base fluid into a
dispersed phase, the interfacial energy transport between
particle and base fluid becomes enhanced significantly
such that the nanofluid’s conductivity takes its value of
upper H-S bound (Fan J and Wang LQ: Heat conduction
in nanofluids: structure-property correlation, submitted).
Figures 1 and 2 compare the experimental data of

nanofluid thermal conductivity [11,20,34-63] with the
H-S bounds [33]. For a concise comparison in Figure 1,
the H-S bounds (Equations 1 and 2) are rewritten in the
form of
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As kp/kf moves away from the unity along both direc-
tions, the separation between the upper and lower H-S
bounds becomes pronounced (Figures 1 and 2) so that
the room for manipulating nanofluid conductivity via
changing the particle morphology becomes more spa-
cious. The H-S bounds are respected by some nano-
fluids for which their thermal conductivity is strongly
dependent on particle morphology, such as whether
nanoparticles stay well-dispersed in the base fluid, form
aggregates, or assume a configuration of continuous
phase that disperses the fluid into a dispersed phase
(Figure 1). There are thermal conductivity data that fall
outside the H-S bounds (Figures 1 and 2).
Ordered liquid layer
Both experimental and theoretical evidences have been
reported of the presence of ordered liquid layer near a
solid surface by which the atomic structure of the liquid
layer is significantly more ordered than that of bulk
liquid [64-67]. For example, two layers of icelike struc-
tures are experimentally observed to be strongly
bounded to the crystal surface on a crystal-water inter-
face, followed by two diffusive layers with less significant
ordering [65]. Three ordered water layers have also been
observed numerically on the Pt (111) surface [64].
The study is very limited regarding why and how

these ordered liquid layers are formed. There is also a
lack of detailed examination of properties of these
layers, such as their thermal conductivity and thickness.
Since ordered crystalline solids have normally much
higher thermal conductivity than liquids, the thermal
conductivity of such liquid layers is believed to be better
than that of bulk liquid. The thickness h of such liquid
layers around the solid surface can be estimated by [17]
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where Na is the Avogadro’s number, and rf and Mf are
the density and the molecular weight of base fluids,
respectively. The liquid layer thickness is thus 0.28 nm
for water-based nanofluids, which agrees with that from
experiments and molecular dynamic simulation on the
order of magnitude.
The presence of liquid layers could thus upgrade the

nanofluid effective thermal conductivity via augmenting
the particle effective volume fraction. For an estimation
of an upper limit for this effect, assume that the thickness
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and the conductivity of the liquid layer are 0.5 nm and
the same as that of the solid particle, respectively. For
spherical particles of diameter dp, Equation (1) offers the
conductivity ratio with and without this effect:
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where h = (kp - kf)/(kp + 2kf). The variation of (ke)with/
(ke)without with h� and dp/2h is illustrated in Figure 3,
showing that the liquid-layering effect is important only
when h� is large and dp/2h is small. This is normally
not the case for practical nanofluids. For Cu-in-water
nanofluids (h ≈ 1), for example, (ke)with/(ke)without ≈
1.005 with � = 0.5% and dp = 10 nm.
Although the liquid layers offer insignificant conduc-

tivity enhancement through augmenting the particle
volume fraction, their presence do facilitate the forma-
tion of particle network by relaxing the requirement of
particle physical contact with each other (Figure 4). This
will promote the formation of interconnected particle

morphology, and thus upgrade the nanofluid thermal
conductivity toward its upper bound through the mor-
phology effect.

Dynamic mechanisms
Coupled transport
In a nanofluid system, normally, there are two or more
transport processes that occur simultaneously. Examples
are the heat conduction in dispersed phase, heat con-
duction in continuous phase, mass transport, and che-
mical reactions either among the nanoparticles or
between the nanoparticles and the base fluid. These pro-
cesses may couple (interfere) and cause new induced
effects of flows occurring without or against its primary
thermodynamic driving force, which may be a gradient
of temperature, or chemical potential, or reaction affi-
nity. Two classical examples of coupled transport are
the Soret effect (also known as thermodiffusion or ther-
mophoresis) in which directed motion of particles or
macromolecules is driven by thermal gradient and the
Dufour effect that is an induced heat flow caused by the
concentration gradient.
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Figure 1 Comparison of experimental data with H-S bounds.
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While the coupled transport is well recognized to be
very important in thermodynamics [68], it has not been
well appreciated yet in the nanofluid society. The first
attempts of examining the effect of coupled transport
on nanofluid heat conduction have been recently made
in some studies [1,2,9,18], which are briefly outlined
here. With the coupling between the heat conduction in
the fluid and particle phases denoted by b and s-phases,
respectively, the temperature T obeys the following
energy equations [1,2]
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where T is the temperature; subscripts b and s refer to
the b and s-phases, respectively. gb = (1 - �)(rc)band gs =
�(rc)s are the effective thermal capacities of b and

s-phases, respectively, with r and c as the density and the
specific heat. � is the volume fraction of the s-phase.
h and aυ come from modeling of the interfacial flux and
are the film heat transfer coefficient and the interfacial
area per unit volume, respectively. kbb and kss are the
effective thermal conductivities of the b and s-phases,
respectively; kbs and ksb are the coupling (cross) effective
thermal conductivities between the two phases.
Rewriting Equations (8) and (9) in their operator form,

we obtain
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An uncoupled form can then be obtained by evaluat-
ing the operator determinant such that
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Figure 2 Comparison of effective thermal conductivity between experimental data and H-S bounds.
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where the index i can take b or s. Its explicit form
reads, after dividing by haυ(gb + gs)
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Equation (12) is not a classical heat-conduction equation,
but can be regarded as a dual-phase-lagging (DPL) heat-
conduction equation with ((kbsksb - kbbkss)/(haυ))Δ

2Ti as

the DPL source-related term F t
F t

tq( , )
( , )

r
r 
 and with

τq and τT as the phase lags of the heat flux and the tem-
perature gradient, respectively [2,18,69]. Here, F(r,t) is the

volumetric heat source. k, rc, and a are the effective ther-
mal conductivity, capacity and diffusivity of nanofluids,
respectively.
The computations of kbb, kss, kbs, and ksb are avail-

able in [27,28] for some typical nanofluids. The
coupled-transport contribution to the nanofluid ther-
mal conductivity, the term (kbs + ksb), can be as high
as 10% of the of the overall thermal conductivity
[27,28]. The more striking effect of the coupled trans-
port on nanofluid heat conduction can be found by
considering
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Therefore, by the condition for the existence of ther-
mal waves that requires τT/τq<1 [18,70], thermal waves
may be present in nanofluid heat conduction.
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Note also that, for heat conduction in nanofluids,
there is a time-dependent source term F(r,t) in the DPL
heat conduction (Equations (12) and (13)). Therefore,
the resonance can also occur. When kbs = ksb = 0 so
that τT/τq is always larger than 1, thermal waves and
resonance would not appear. Therefore, the coupled
transport could change the nature of heat conduction in
nanofluids from a diffusion process to a wave process,
thus having a significant effect on nanofluid heat
conduction.
Therefore, the cross coupling between the heat con-

duction in the fluid and particle manifests itself as ther-
mal waves at the macroscale. Depending on factors such
as material properties of nanoparticles and base fluids,
nanoparticles’ geometrical structure and their distribu-
tion in the base fluids, and interfacial properties and
dynamic processes on particle-fluid interfaces, the cross-
coupling-induced thermal waves may either enhance or
counteract with the molecular-dynamics-driven heat dif-
fusion. Consequently, the heat conduction may be
enhanced or weakened by the presence of nanoparticles.
This explains the thermal conductivity data that fall out-
side the H-S bounds (Figures 1 and 2).
If the coupled transport between heat conduction and

particle diffusion is considered, then the temperature T
and particle volume fraction � satisfy the following
equations of energy and mass conservation:
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where subscripts m and T stand for mass transport and
thermal transport, respectively. Dss is the effective diffusion

coefficient for nanoparticles. kbm, ksm, Dmb, Dms, and DmT

are five transport coefficients for coupled heat and mass
transport. By following a similar procedure as that of devel-
oping Equation (12), an uncoupled form with u (Tb, Ts, or
�) as the sole unknown variable is obtained,
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This can be regarded as a DPL heat-conduction equa-

tion regarding Δu with τq, τT, and F t
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Figure 4 Ordered liquid layer in promoting the formation of interconnected particle morphology.
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the phase lags of the heat flux and the temperature gra-
dient, and the source-related term, respectively. There-
fore, the coupled heat and mass transport is capable of
varying not only thermal conductivity from that in
Equation (13) to the one in Equation (21) but also the
nature of heat conduction from that in Equation (12) to
the one in Equation (19). As practical nanofluid system
always involves many transport processes simulta-
neously, the coupled transport could play a significant
role. For assessing its effect and understanding heat con-
duction in nanofluids, future research is in great
demand on coupling (cross) transport coefficients that
are derivable by approaches like the up-scaling with
closures [2,27,28], the kinetic theory [71,72], the time-
correlation functions [73,74], and the experiments based
on phenomenological flux relations [68]. While the
uncoupled form of conservation equations, such as
Equations (12) and (19), is very useful for examining
nature of heat transport, its coupled form, such as Equa-
tions (8), (9), (16)-(18), is normally more readily to be
resolved for the temperature or concentration fields
after all the transport coefficients are available.
Brownian motion
In nanofluids, nanoparticles randomly move through
liquid and possibly collide. Such a Brownian motion was
thus proposed to be one of the possible origins for ther-
mal conductivity enhancement because (i) it enables
direct particle-particle transport of heat from one to
another, and (ii) it induces surrounding fluid flow and
thus so-called microconvection. The ratio of the former
contribution to the thermal conductivity (kBD) to the
base fluid conductivity (kf) is estimated based on the
kinetic theory [75],
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where subscripts p and BD stand for the nanoparticle
and the Brownian diffusion, respectively; kB is the Boltz-
mann’s constant (1.38065 × 10-23J/K); and μ is the fluid
viscosity. The kinetic theory also gives an upper limit
for the ratio of the latter’s contribution to the thermal
conductivity (kBC) to the base fluid conductivity (kf) [76],
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where subscript BC refers to the Brownian-motion-
induced convection, and af is the thermal diffusivity of
the base fluid.
Consider a 1% volume fraction of dp = 10 nm copper

nanoparticle in water suspension at T = 300 K. (rc)P =
8900 kg/m3 × 0.386 kJ/(kg K) = 3435.4 kJ/(m3 K),
μ = 0.798 × 10-3kg/(ms), kf = 0.615 W/(mK), and af =

1.478 × 10-7 m2/s. These yield kBD/kf = 3.076 × 10-6 and
kBC/kf = 3.726 × 10-4. Therefore, both contributions are
negligibly small.
Although the direct contribution of particle Brownian

motion to the nanofluid conductivity is negligible, its
indirect effect could be significant because it plays an
important role in processes of particle aggregating and
coupled transport.

Concluding remarks
Under the specified volume fractions and thermal con-
ductivities of the two phases in the colloidal state, the
interfacial energy transport between the two phases
favors a configuration in which the higher-conductivity
phase forms a continuous path for thermal flow and dis-
perses the lower-conductivity phase. The effective ther-
mal conductivity is thus bounded by those corresponding
to the two limiting morphologies: the well-dispersed con-
figuration of the higher-conductivity phase in the lower-
conductivity phase and the well-dispersed configuration
of the lower-conductivity phase in the higher-conductiv-
ity phase, corresponding to the lower and the upper
bounds of thermal conductivity, respectively. Without
considering the effect of interfacial resistance and cross
coupling among various transport processes, the classical
effective-medium theory gives these bounds known as
the H-S bounds. A wide separation of these two bounds
offers spacious room of manipulating nanofluid thermal
conductivity via the morphology effect.
In a nanofluid system, there are normally two or more

transport processes that occur simultaneously. The cross
coupling among these processes causes new induced
effects of flows occurring without or against its primary
thermodynamic driving force and is capable of changing
the nature of heat conduction via inducing thermal
waves and resonance. Depending on the microscale phy-
sics (factors like material properties of nanoparticles and
base fluids, nanoparticles’ morphology in the base fluids,
and interfacial properties and dynamic processes on par-
ticle-fluid interfaces), the heat diffusion and thermal
waves may either enhance or counteract each other.
Consequently, the heat conduction may be enhanced or
weakened by the presence of nanoparticles.
The direct contributions of ordered liquid layer and

particle Brownian motion to the nanofluid conductivity
are negligible. Their influence on the particle morphol-
ogy and/or the coupled transport could, however, offer a
strong indirect effect to the nanofluid conductivity.
Therefore, nanofluids with conductivity of upper H-S

bound can be obtained by manipulating particles into an
interconnected configuration that disperses the base
fluid, and thus significantly enhancing the particle-fluid
interfacial energy transport. Nanofluids with conductivity
higher than the upper H-S bound could also be
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developed by manipulating the cross coupling among
various transport processes and thus the nature of heat
conduction in nanofluids.
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