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A numerical study on nanoliter bubble formation process in microfluidic T-junctions is con-
ducted. The simulated bubble sequence agrees well with experiments. The pressure and velocity
distribution in liquid phase, and streamlines of relative velocity of liquid to bubbles are obtained.
We also studied pressure variation at the junction and gas flow rate for the first several bubbles,
and illustrated the special impact of channel width ratio on bubble formation process. Finally,
we derived the critical nondimensional gas pressure above which bubbles can be generated.
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1.

Generation of nanoliter bubbles is an elementary
function of many microfluidic systems because of
its wide range of applications, particularly when
the bubble size is uniform. Examples include chem-
istry, biochemistry, biomedical engineering, chem-
ical engineering, food industry, pharmaceuticals,
foams, material sciences, microelectronics, lab-on-
a~chip, microfluidic chips, micromixers, micropower
generation, microreactors and micrototal analysis
systems (u TAS).' ' Their fundamental medical
applications range from ultrasound contrast agents
for noninvasively imaging both the “macrovascular”
anatomy and more importantly, the “microvascu-
lar” physiology, to therapeutic delivery systems for
delivering site-specific therapy to targeted organs
in the body and as the carriers for newer therapeu-
tic options.'!* In addition, intravenous injection
of a stabilized solution of sufficiently small bubbles
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might be used in acute lung disfunction.* The size
and its distribution are critical in all these applica-
tions. Conventional techniques generate bubbles by
the chaotic interactions of surface tension, viscosity
and turbulence, usually involving complex machin-
ery or chemical reactions.' ® Little control over the
formation of individual bubbles is available, and a
broad distribution of sizes is typically produced.' 3

In an attempt to produce highly controllable
nanoliter-bubbles with size distributions signifi-
cantly more narrow than those generated using
conventional methods, a “bottom-up” approach —
microfluidic T-junction — has been recently
proposed for fabricating bubbles at the level of
individual bubbles.'® '® In the approach, the bub-
ble is formed at the T-junction of two microflu-
idic channels conveying a gas and a liquid into
the junction respectively. The approach operates
in the laminar flow region and generates one
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bubble at a time at the T-junction. As the con-
ditions for the generation are identical for every
bubble, the bubbles generated by this approach are
highly monodispersed, with a coefficient of varia-
tion (CV) of the bubble diameter less than 2%.1°18
Here CV is defined by CV = o4/d,, where o4 is
the standard derivation of the diameter and d,,, is
its mean value. In particular, for fixed fluid prop-
erties and geometry, there exists a range where the
bubble generation frequency depends only on lig-
uid inlet pressure but not on the gas pressure.'®
This offers the advantage of generating different-
sized bubbles at a fixed frequency by varying the
gas pressure. The approach also provides a simple
means of enhanced mixing in liquid slugs separated
by discrete gas bubbles generated at the T-junction
due to both the reduction of the diffusion length
and the internal recirculation within the slugs.'®2%

The present work aims to further develop
this promising technique by simulating the bub-
ble formation process in microfluidic T-junctions
numerically. The numerical scheme is based on the
finite-element method encoded in MATLAB with
equation solver COMSOL. The used front-tracking
method can capture the gas—liquid interface more
accurately than the front-capturing methods com-
monly used in literature.?2’ 23 The present work is
the first attempt to simulate the gas—liquid flow
in T-junctions by this method although it was
once applied for flow-focusing device.?*2> We will
study the bubble formation process, pressure and
velocity distributions, relative velocity streamlines,

pressure variation at the junction and gas flow rate.
In addition, we will analyze the impact of chan-
nel width ratio on bubble formation process and
find the condition for generating the most bubbles
for the specified volume of two-phase fluid. Finally,
based on numerical simulation and experimental
observation, we determine a critical value of non-
dimensional gas pressure above which bubbles can
be generated.

2. Governing Equations and
Numerical Algorithm

Consider a two-dimensional T-junction as illus-
trated in Fig. 1. A liquid stream (grey-colored) flows
into the T-junction from the left inlet of main chan-
nel, while a gas stream (white-colored) flows into
the T-junction from the vertical gas channel under
constant pressure p,. The two streams then meet
at the junction. For a certain range of flow param-
eters, the gas breaks periodically to form bubbles
which then flow downstream to the right outlet of
the main channel.

For this system, the spatial characteristic
dimensions are the widths of gas channel and main
channel which are marked as D7 and D in Fig. 1.
Compared with the liquid, the gas viscosity and
density are negligibly small. The gas pressure varia-
tion is also relatively small so that we can specify a
constant pressure for the whole gas domain.?* Thus
the liquid—gas interface is regarded as a boundary of
the liquid phase, on which Young—Laplace equation
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Fig. 1. Sketch of two-dimensional microfluidic T-junction with all relevant lengths shown.
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Fig. 2. Snapshot of gas tip shape in experiments.18

is fulfilled. Because experiments show a thin liquid
film between the gas stream and the solid wall of
gas channel (Fig. 2) which may result from the poor
wettability of gas with wall, we also keep such a film
in our simulations (Fig. 1).

For the two-dimensional Cartesian coordinate
system (x,y) in Fig. 1, the Navier-Stokes and
continuity equations for incompressible Newtonian
liquid in terms of nondimensional variables, can be
written as
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where V = (9/0%,9/d7), and the tilde () identifies

nondimensional parameters. Here,
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where u and v are the velocity components in x
and y directions, respectively. uy, is the mean liquid

velocity at the inlet, ¢ is the time, p is the lig-
uid pressure. p and p are the liquid viscosity and
density, respectively.

In microfluidic systems, the liquid velocity is
usually on the order of 1073 — 1072 m/s. The char-
acteristic dimension of microchannels is about tens
of micrometers. Taking water as the sample liquid,
the Reynolds number Re in microfluidic systems is
on the order of 1072 — 10~!. The flow can thus be
regarded as Stokes flow. Equation (1) simplifies to
the Stokes equation:
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(3)

Young-Laplace equation is applied as the dynamic
boundary condition on the interface 0$2s:

- _ L
njoij = — (p + a/{) n;. (4)

Here n = (ng,n,) is the unit normal of the interface
in the zy plane, 7;; is the nondimensional stress ten-
sor defined by o0;;/(puin/D2) with o;; as the stress
tensor. py is the nondimensional gas pressure and
Ca is the capillary number. £ is the mean curva-
ture of the interface. They are defined by

- Py
= — y 5
pg Muin/DQ ( )
Ca =100 (6)
Y

gl/j,l _ j,l/g/

k= (32 + §2)3/2° (7)

where p, is the gas pressure and « is the surface
tension. Here the interface is represented by a para-
metric curve x(5) = [2(S5),y(5)], where S is the
arc-length scaled by the total length of interface.
Single prime (') and double primes (”) in Eq. (7)
represent first and second derivatives with respect
to S, respectively.

The following kinematic boundary condition is
used to update the interface location:

dx

df
We use the second-order Runge-Kutta scheme for
resolving this equation.

= u(x)|xeo0; - (8)
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Other boundary conditions include:

a=—6[g" - 20+ 1)g+BB+1)], 0=0
on the inlet boundary: 022, (9a)
p = 0 on the outlet boundary: 9Qy¢, (9b)
@ =¥ = 0 on channel walls: 02123 4,6,7,.89,11 -
(9¢)

Here, 8 is a nondimensional length scaling factor
as shown in Fig. 1, denoting the ratio between the
length and width of the gas channel. The geomet-
ric definitions of all boundaries are illustrated in
Fig. 1, where the boundaries 92y and 0f)g are two
round corners with a radius of . Equations (3),
(4), (8)—(9c) define a mathematical model that fully
describes the bubble formation process.

In experiments, a semicircle-shaped gas tip is
observed in the gas channel before a bubble forming
(Fig. 2). Thus, we use a semicircle tip for the initial
shape of gas—liquid interface. At each time step, the
velocity field is obtained by solving the governing
equation, Eq. (3), for specified interface shape at
that time instant. Then the interface is assumed to
move at the same speed of the liquid particle next to
it and is updated by using the kinematic boundary
condition, Eq. (8). The velocity field can thus be
resolved again for the new interface location. This
process is repeated until a bubble breaks up.

A second-order Runge-Kutta scheme coded
in MATLAB is used to advance the interface.
The finite-element solver COMSOL interfaces with
MATLAB to resolve the velocity and pressure fields
of liquid at each time instant. The mesh is gener-
ated based on the Delaunay algorithm.2® The ini-
tial number of nodes at the interface is set to be
80. Since the computational domain is remeshed
at each time step, this number increases to sev-
eral hundreds when a bubble forms. The element
size at the interface is set to be not larger than
0.03. There are a total of several thousand elements
for the whole computational domain. This mesh is
proved to be fine enough to obtain grid-independent
solution.?* When the governing equation is solved
by COMSOL, it is transformed to its variational
form based on the variational principle. Variational
equations are then solved by an affine invariant form
of the damped Newton method.?® The criterion of
convergence is that the weighted Euclidean norm
(1/N) (| Ei| /W;)?)1/? is less than 1076 (IV is the
number of degrees of freedom, F; is the estimated
error in true solution vector, and W; is the weight

Fig. 3. Sketch on the bubble break-up implementation.

factor). The validity of the code for simulating
two-phase problems has been well assessed. Read-
ers are referred to Ref. 24 for the details. In order
to simulate the interface evolution after a bubble
breaking up, a small length scale dy (0.01) is defined
to determine when to break the gas thread. When
the vertical distance 0 from the corner (0Qg) to the
interface (shown in Fig. 3) is less than dp, we use
two arcs to cap the new bubble and gas thread. The
radiuses of the two arcs are adjusted to approxi-
mate Jg for each case. Unless dg is too small to be
annihilated by the spatial resolution, this method
can deal with the break-up phenomenon effectively
without influencing the overall dynamic of the
System.

The ideal gas law is applied to bubbles which
have broken away from the gas stream. The prod-
uct of bubble volume and absolute pressure is thus
constant. In this study, the atmospheric pressure is
set about ten times of the superficial pressure of
gas phase. Thus the variation of bubble size from
the junction to the outlet is within 10%.

Figure 4 compares the simulated bubble growth
morphology with that from experiments, showing a
good agreement between the two.

3. Results and Discussion
3.1. Bubble sequence

We simulate the bubble formation process at Dy =
1, W = 40, py = 900, and Ca = 0.03. The simula-
tion snapshot of a six-bubble sequence is illustrated
in Fig. 5. In this 2-D system, the area of each bub-
ble is used to characterize the bubble size. The sizes
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(a)

Fig. 4. Bubble growth morphology: (a) simulation results and (b) snapshots from experiments'” (D = 1, W = 40, g = 900,

and Ca = 0.03).

of the first six bubbles under the same pressure as
in gas channel are 2.31, 2.35, 2.40, 2.47, 2.53 and
2.60, respectively.

Figure 6 illustrates the pressure distribution
in liquid phase along the centerline of the main
channel. The absolute velocity field is illustrated
in Fig. 7, where arrows indicate the flow direction
and different colors indicate the magnitude of veloc-
ity. Both pressure and velocity distributions show
that the flow in liquid slugs between bubbles is
Poiseuille flow (except the regions very near to bub-
bles). Moreover, streamlines of relative velocity in
liquid slugs are illustrated in Fig. 8. Here the rela-
tive velocity is defined as:

iy = i — Ty, (10)

where wu; is the nondimensional bubble velocity.
Simulation shows that all bubbles flow at the same
velocity, 4y is thus calculated by dividing the cen-
troid position change of one bubble (AZ) by the
time period (Af). Vortexes are observed in the rel-
ative velocity field, which indicates a better mixing
of liquid near bubble caps. Consequently, shorter
liquid slugs can strengthen mixing better than
longer slugs.

Variations of pressure at the junction (black dot
position in Fig. 9) pjun and gas flow rate @, (non-
dimensionalized by ui, D3) are plotted in Figs. 9 and
10 up to the time instant when the fourth bub-
ble nearly breaks up. Periodic variations of pju,
and Qg can be observed in this process. Figure 9
also clearly shows the three stages in one bubble
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Fig. 6. Pressure distribution in the liquid phase along the

centerline of main channel.

Simulated bubble sequence snapshot at D; = 1, W = 40, pg = 900, and Ca = 0.03.

formation period: when gas tip is still in the gas
channel before entering the main channel, the pres-
sure at the junction is the lowest; with the gas tip
gradually blocking the cross-section of main chan-
nel, the pressure on the upstream of the growing
bubble accumulates to a high value; during the
squeezing period, the pressure at the junction keeps
high and reaches the highest value when a bub-
ble is just about to break up. After the bubble
breaking up, the situation returns to the first stage
quickly.

Let Ap; be the pressure drop from the junc-
tion to the outlet when the ith bubble is generated
and there are (i — 1) bubbles in the main chan-
nel if the first bubble has not reached the outlet.
It can be calculated based on the pressure drop
for Poiseuille flow and the pressure drop across
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Fig. 7. Absolute velocity field in liquid slugs (color online).
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Fig. 8.

Streamlines of relative velocity field in liquid slugs (color online).
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Variation of the nondimensional pressure at the junction up to the instant when the fourth bubble nearly breaks up

(A, B, C, D and E are five typical moments in one bubble formation period).

bubbles:

Ap; = 12[W — Dy — (i — 1) Lyt + (i — 1) Apy.
(11)

Here, u; is the cross-sectional average velocity of
liquid. The pressure drop Ap, across a bubble in
circular and 2D capillaries can be evaluated by?"2%:

c 23

Cain (12)

Apy =

where ¢ is a constant of order 10 available in Refs. 29
and 30. Since Ca is usually small for microfluidic

systems, 1, and @; are equal with each other.?72%:30
Therefore,
- ~ C  _2/3 =
Api - Apiq = mub/ — 12 Ly - (13)
14
0.0 1 1 1 1 1 1 1
0 2 4 8 10 12
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Fig. 10. Variation of the nondimensional gas flow rate up to
the instant when the fourth bubble nearly breaks up.

If (Ap; — Ap;—1) is smaller than 0, such as the case
in Fig. 5, the size of the ¢th bubble is larger than
that of the (i — 1)th bubble. If (Ap; — Ap;—1) is
larger than 0, which is likely to occur at small Ca
and small Ly, the ith bubble is smaller than the
(¢ — 1)th bubble. If (Ap; — Ap;—1) equals to 0, the
sizes of the ith and (i — 1)th bubble are expected
to equal with each other. Therefore, the variation
of bubble size before the first bubble reaches the
outlet can be controlled by adjusting the sign of
(Ap; — Ap;—1). For a fixed operational condition,
the bubble size will become constant soon after the
first bubble leaves the system.!718

3.2. Impact of channel width ratio
on the final bubble-based
two-phase flow

For the purpose of either producing nanoliter-
bubbles or strengthening liquid mixing by using
microfluidic T-junctions, shorter bubbles and
shorter liquid slugs are preferable. We conduct the
following analyses based on small Ca assumption to
show how channel width ratio influences the bubble
formation process.

Note that bubbles flow at the same velocity as
the surrounding liquid when Ca is very small. The
total nondimensional bubble length can be calcu-

lated by:

f/ bub — 72(] . 14
> bu 1+ Qg ( )

According to the scaling in Ref. 31 and the modifi-

cation in Ref. 16, the length of one bubble can be
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predicted by:
Lywh = D1Q, +1. (15)

We can thus approximate the number of bubbles in
the main channel at the steady state:

e,
T+ G (DG, +1)

_ f’z bub _
Lpub
It shows that when

Qy=1\/1/Dy, (17)

n has a maximum value. This phenomenon is
demonstrated in Fig. 11(a). In other words, for
certain geometry and fluids, when nondimensional
gas flow rate fulfills Eq. (17), the total nondimen-
sional length of a bubble and a liquid slug is the
smallest, or there are the most bubbles existing in
the main channel at the same time. Figure 11(b)
demonstrates the maximum-n-condition of the gas—
liquid two phase flow for three geometries with the
same main channel width, the same liquid inlet flow
rate, as well as the same fluid properties, but with
three different gas channel widths D;. According
to Egs. (15) and (17), the bubble length equals to

V Dy + 1. Therefore, bubbles are the smallest at
Dy, = 0.25; at the same time, the liquid slugs are
the shortest. Moreover, according to the following

(16)

n

)
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D, =025
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Fig. 11. (a) Change of bubble and liquid slug lengths with
increasing gas flow rate. (b) Change of bubble and liquid slug
lengths with different gas channel widths for the case when
there is maximum number of bubbles in the main channel.

relation regarding bubble formation time,

Voub VD +1
Qg \/ 1/D1
where Vi1, characterizes the bubble size, bubbles
are also generated at a fastest rate for the smallest
D . For the purpose of using microfluidic T-junction
as a bubble-generation device, small D; T-junctions
can generate smaller bubbles with a faster speed.
For the purpose of improving chemical reaction,
small D; T-junctions more enhance the mixing
within liquid phase due to the shorter liquid slugs.
To obtain the same short liquid slugs in a T-
junction with larger D;, the bubbles will be much
longer.

g:

(18)

3.3. Minimum gas pressure

Both simulations and experiments show that for
fixed T-junction geometry, fluid properties and lig-
uid inlet flow rate, bubbles can be generated only
when the gas pressure is higher than a critical
value.!”18 This inspires us to find the minimum
value of nondimensional gas pressure pgmin for gen-
erating bubbles. Since the volume flow rate at the
outlet equals the total inlet flow rates of liquid and
gas for incompressible fluids, and the minimum gas
pressure corresponds to almost zero gas flow rate,
the volume flow rate at the outlet should be almost
equal to but slightly larger than the inlet volume
flow rate of liquid. Therefore, there are few bubbles
in the main channel, so that the flow rate at the out-
let Qout can be calculated based on the Poiseuille
flow:
%

Qout = @Ga (19)

where G is the pressure gradient and can be approx-
imated by the pressure drop from the junction
to the outlet divided by W. Both simulation and
experiment shows that after a bubble breaks up
from the gas stream, the residual gas tip changes
from an angular shape to a roundish one (Fig. 3).
For smaller gas pressure, the gas tip is more likely to
become a semicircle shape in the gas channel before
entering the main channel and deflecting with lig-
uid. For the case of minimum gas pressure, the
liquid pressure near the semicircle gas tip is thus
approximately p; — 2v/D;. Noting that the super-
ficial liquid pressure at the outlet is zero, we have

bg — 27/D1

G = W

(20)
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Therefore,

D3 p, —2~v/D
= Dip—2/Di (21)
124 w

The nondimensional outlet flow rate is

Q _ Qout _ iﬁg_<2/0a'l~)1)
T Dy 12 W '

(22)

Notg that the inlet flow rate is nondimensionalized
as Qin = Qin/uinD2 = 1. For generating bubbles,
we require

1 g — (2/~Ca-l~)1)

>1 23
5 = (23)
or
ﬁg > ﬁgmin ) (24>
where the minimum gas pressure
~ 2
g Ca - D1 ( )

In order to generate a bubble, therefore, the gas
pressure must be large enough to overcome the flow
resistance in the downstream section and the pres-
sure difference between two phases due to the inter-
facial tension.

4. Concluding Remarks

The Runge-Kutta finite element method is success-
fully implemented to simulate the nanoliter-bubble
formation process in microfluidic T-junctions for
the Stokes flow regime. The simulated pressure dis-
tribution and velocity field indicate the flow in lig-
uid slugs between bubbles is Poiseuille flow except
the regions near bubble caps. Vortexes are observed
for the relative velocity of liquid to bubbles. The
mixing of liquid can thus be enhanced, especially
for shorter liquid slugs, in such bubble-based flow
system. Secondly, the sizes of the first several bub-
bles tend to increase for relatively large Ca value
and large bubbles, and decrease for small C'a and
small bubbles. Thirdly, for the same liquid inlet flow
rate and main channel width, smaller gas channel
can produce both shorter bubbles and shorter liquid
slugs at a faster speed. Thus T-junction with small
channel width ratio between the gas channel and
the main channel is preferable for either producing
nanoliter-bubbles or enhancing mixing within the
liquid phase. Finally, we obtain the critical value of
nondimensional gas pressure above which bubbles
can be generated.
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