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Modeling Bioheat Transport at
Macroscale
Macroscale thermal models have been developed for biological tissues either by the
mixture theory of continuum mechanics or by the porous-media theory. The former uses
scaling-down from the global scale; the latter applies scaling-up from the microscale by
the volume averaging. The used constitutive relations for heat flux density vector include
the Fourier law, the Cattaneo–Vernotte (Cattaneo, C., 1958, “A Form of Heat Conduc-
tion Equation Which Eliminates the Paradox of Instantaneous Propagation,” Compt.
Rend., 247, pp. 431–433; Vernotte, P., 1958, “Les Paradoxes de la Théorie Continue de
I’equation de la Chaleur,” Compt. Rend., 246, pp. 3154–3155) theory, and the dual-
phase-lagging theory. The developed models contain, for example, the Pennes (1948,
“Analysis of Tissue and Arterial Blood Temperature in the Resting Human Forearm,” J.
Appl. Physiol., 1, pp. 93–122), Wulff (1974, “The Energy Conservation Equation for
Living Tissues,” IEEE Trans. Biomed. Eng., BME-21, pp. 494–495), Klinger (1974,
“Heat Transfer in Perfused Tissue I: General Theory,” Bull. Math. Biol., 36, pp. 403–
415), and Chen and Holmes (1980, “Microvascular Contributions in Tissue Heat Trans-
fer,” Ann. N.Y. Acad. Sci., 335, pp. 137–150), thermal wave bioheat, dual-phase-lagging
(DPL) bioheat, two-energy-equations, blood DPL bioheat, and tissue DPL bioheat mod-
els. We analyze the methodologies involved in these two approaches, the used constitutive
theories for heat flux density vector and the developed models. The analysis shows the
simplicity of the mixture theory approach and the powerful capacity of the porous-media
approach for effectively developing accurate macroscale thermal models for biological
tissues. Future research is in great demand to materialize the promising potential of the
porous-media approach by developing a rigorous closure theory. The heterogeneous and
nonisotropic nature of biological tissue yields normally a strong noninstantaneous re-
sponse between heat flux and temperature gradient in nonequilibrium heat transport.
Both blood and tissue macroscale temperatures satisfy the DPL-type energy equations
with the same values of the phase lags of heat flux and temperature gradient that can be
computed in terms of blood and tissue properties, blood-tissue interfacial convective heat
transfer coefficient, and blood perfusion rate. The blood-tissue interaction leads to very
sophisticated effect of the interfacial convective heat transfer, the blood velocity, the
perfusion, and the metabolic reaction on blood and tissue macroscale temperature fields
such as the spreading of tissue metabolic heating effect into the blood DPL bioheat
equation and the appearance of the convection term in the tissue DPL bioheat equation
due to the blood velocity. �DOI: 10.1115/1.4002361�

Keywords: bioheat transport, mixture theory, porous-media theory, dual-phase-lagging,
blood-tissue interaction, macroscale, modeling
Introduction
The accurate description of heat transport in biological tissues

s essential not only for fundamental understanding of biological
rocesses/functions but also for many medical operations of ther-
al therapy, cryopreservation, and biopreservation �1–5�. Biologi-

al tissues are composed of dispersed cells separated by voids.
lood flows into these tissues through arteries and perfuses to the
ells via blood capillaries. Returned blood from the capillaries is
ollected in veins and then pumped back to the heart. Heat trans-
ort in biological tissues is thus enriched by heat conduction in
issue and vascular system, blood-tissue convection, and perfusion
hrough the capillaries within the tissue and also metabolic heat
eneration.

Heat transport in biological tissues may be studied from a mo-
ecular point of view, from a microscopic point of view, or from a

acroscopic point of view �6�. The macroscale is a phenomeno-
ogical scale that is much larger than the microscale of cells and
oids and much smaller than the system length scale. The interest
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in the macroscale rather than the molecular scale and the micro-
scale comes from the fact that a prediction at the molecular scale
or the microscale is complicated because of either the huge num-
bers of particles at molecular scale or the complex microscale
anatomical structure of biological media, and that we are usually
more interested in large scales of heat transport for practical ap-
plications. Existence of such a macroscale description equivalent
to the microscale behavior requires a good separation of length
scale and has been well discussed in Ref. �7�.

The macroscopic thermal models for blood-perfused tissues
have been developed by two approaches: �1� scaling-down from
the global scale based on the mixture theory of continuum me-
chanics and �2� scaling-up from the microscale based on porous-
media theory. We present a concise synthesis of these two ap-
proaches and the models developed. Instead of a comprehensive
review, our emphasis is limited to identify the essence of the two
approaches and to discuss the fundamental heat-conduction theo-
ries they involved.

2 Scaling-Down by Mixture Theory
To develop a macroscale model of heat transport in living bio-
logical tissues, the mixture theory of continuum mechanics views
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Downlo
lood and tissues as a mixture of continuum deformable media. In
his approach, no microscale presentation of the system is pro-
ided and microscale quantities are not introduced. Phase proper-
ies are defined at the macroscale. The global balance equations
re formed in terms of macroscale properties and with additional
erms accounting for the interaction between blood and tissue.
hese global equations can then be localized to obtain the mac-

oscale point equations. Required constitutive equations are sup-
lied by direct postulation of desirable relations at macroscale.

There are two drawbacks associated with this approach. The
rst is the lack of connection between microscale and macroscale
roperties. The second is the difficulty in extension to multiphase
ystems with distinct properties of interfaces and common curves.

In this approach, a global balance is written with the integrand
roperties at the macroscale. For a property � of the �-phase, the
onservation equation reads �8�

d

dt�
V

�����mac
� dV +�

S

n · �����mac
� �vmac

� − w��mac
� − ��i�mac

� �dS

−�
V

���G�mac
� dV −�

V

���f�mac
� dV = 0 �1�

here t is time, the superscript � is used to indicate the �-phase
roperties, and the subscript “mac” is used to indicate the mac-
oscale properties. �, �, and v are the density, the volume fraction,
nd the velocity, respectively. V is the global volume at a given
ime instant t. The boundary of V, denoted by S, may have a
elocity w in general. i is the diffusive flux of � across the bound-
ry, n is the unit vector normal to S and pointing outward from V,

is the term accounting for production of � within the volume,
nd f is the external supply of �. This equation is a mathematical
tatement of the physical principle that the rate of change of some
roperty in a volume is equal to the net flux of that property
cross the boundary of the volume plus production of the property
nd the external supply.

To transform Eq. �1� to a differential form at macroscale, we
ust use the two multiscale theorems �Eqs. �311� and �320� in
ef. �6�� to bring the time derivative inside the integral and to
onvert the boundary integral to a volume integral so that

�
V

� ������mac
�

�t
+ � · ���v��mac

� − � · ��i�mac
� − ���G�mac

�

− ���f�mac
� �dV = 0 �2�

ecause the size of the volume is arbitrary, by the localization
heorem �6�, the integrand in Eq. �2� must be zero as long as
xiom 1 in Ref. �6� is satisfied so that the macroscale point equa-

ion can be obtained as

������mac
�

�t
+ � · ���v��mac

� − � · ��i�mac
� − ���G�mac

� − ���f�mac
� = 0

�3�

onsider � being the internal energy of biological tissue. Equation
3� reduces to

���c�T�mac
t

�t
= − � · ��q�mac

t + ���qm�mac
t + ���qc�mac

t + ���qp�mac
t

+ ���qe�mac
t �4�

here the superscript t is used to indicate the tissue properties, c is
he specific heat, And q is the heat flux density vector. qm, qc, and
p are the volumetric rate of heat generation by the metabolic
eating, the blood interfacial convective heat transfer, and the
lood perfusion, respectively. qe is the volumetric rate of external

eat supply like the one used in hyperthermia therapy. There ex-
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ists some confusion in the literature between qc and qp. The
former comes actually from the interfacial convective heat trans-
fer between the blood and the blood vessel, driving by the tem-
perature difference between them. The latter, on the other hand,
stems from the energy exchange due to the blood perfusion, the
mass-transfer process of nutritive delivery of arterial blood to cap-
illaries in the biological tissue.

The existing thermal models for biological tissues developed by
this approach differ from each other mainly on how to model the
heat flux density vector q. Three constitutive relations for q have
been used: the Fourier law, the Cattaneo–Vernotte �CV� relation,
and the dual-phase-lagging �DPL� relation.

2.1 The Fourier Law. The Fourier law was the first consti-
tutive relation of heat flux density and was proposed by the
French mathematical physicist Joseph Fourier in 1807 based on
experimentation and investigation �9�. For heat conduction in a
homogeneous and isotropic medium, the Fourier law of heat con-
duction reads

q�r,t� = − k � T�r,t� �5�

where r stands for the material point, t stands for the time, T
stands for the temperature, and � stands for the gradient operator.
k is the thermal conductivity of the material, which is a thermo-
dynamic property. By the state theorem of thermodynamics, k
should be a function of two independent, intensive properties
�normally pressure and temperature� �10�. The second law of ther-
modynamics requires that k is positive definite �9,11,12�. In engi-
neering applications, we often take k as a material constant be-
cause variations in pressure and temperature are normally
sufficiently small. The value of k is material dependent. If the
material is not homogeneous or isotropic, k becomes a second-
order tensor �9,11–13�. Along with the first law of thermodynam-
ics, this equation leads to the classical parabolic heat-conduction
equation

�T

�t
= ��T +

�

k
F �6�

Here � is the thermal diffusivity of the material, F is the rate of
internal energy generation per unit volume, and � is the
Laplacian.

By using the Fourier law, Eq. �4� yields a group of thermal
models for biological tissues

����cT�mac
t

�t
= � · ��k � T�mac

t + ���qm�mac
t + ���qc�mac

t + ���qp�mac
t

+ ���qe�mac
t �7�

The thermal models in this group includes the classical Pennes
model �14�, the Wulff model �15�, the Klinger model �16�, and the
Chen and Holmes model �17�. Table 1 lists ��c�mac

t , �mac
t , kmac

t ,
���qm�mac

t , ���q�mac
t , ���qp�mac

t , and ���qe�mac
t in these models.

The Fourier law of heat conduction is an early empirical law. It
assumes that q and �T appear at the same time instant t and
consequently implies that thermal signals propagate with an infi-
nite speed. If the material is subjected to a thermal disturbance,
the effects of the disturbance will be felt instantaneously at dis-
tances infinitely far from its source. Although this result is physi-
cally unrealistic, it has been confirmed by many experiments that
the Fourier law of heat conduction holds for many media in the
usual range of heat flux q and temperature gradient �T �9�.

2.2 The CV Constitutive Relation. With the development of
science and technology such as the application of ultrafast pulse-
laser heating on metal films, heat conduction appears in a range of
high heat flux and high unsteadiness. The drawback of infinite
heat propagation speed in the Fourier law becomes unacceptable.

This has inspired the work of searching for new constitutive rela-
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ions. Among many proposed relations �9�, the constitutive rela-
ion proposed by Cattaneo �18� and Vernotte �19,20�,

q�r,t� + �q

�q�r,t�
�t

= − k � T�r,t� �8�

s the most widely accepted. This relation is named the CV con-
titutive relation after the names of the proposers. Here �q�0 is a
aterial property and is called the relaxation time. The corre-

ponding heat-conduction equation is thus

�T

�t
+ �q

�2T

�t2 = ��T +
�

k
�F + �q

�F

�t
	 �9�

nlike its classical counterpart equation �6�, this equation is of
yperbolic type, characterizes the combined diffusion and wave-
ike behavior of heat conduction, and predicts a finite speed,

VCV =
 k

�c�q
�10�

or heat propagation �21�.
Note that the CV constitutive relation is actually a first-order

pproximation of a more general constitutive relation �single-
hase-lagging model �22��,

q�r,t + �q� = − k � T�r,t� �11�
ccording to which the temperature gradient established at a point
at time t gives rise to a heat flux vector at r at a later time t
�q. There is a finite built-up time �q for the onset of heat flux at
after a temperature gradient is imposed there. Thus �q represents

he time lag needed to establish the heat flux �the result� when a
emperature gradient �the cause� is suddenly imposed. The higher
q /�t corresponds to a larger derivation of the CV constitutive
elation from the classical Fourier law.

The value of �q is material dependent �23–25�. For most solid
aterials, �q varies from 10−10 s to 10−14 s. For gases, �q is nor-
ally in the range of 10−8–10−10 s. The value of �q for some

iological materials and materials with nonhomogeneous inner
tructures can be up to 102 s �26–31�. The long time delay in
eterogeneous materials comes from the fact that the structural
eat interaction occurs at multiscales �32�. Therefore, the thermal
elaxation effects can be of relevance even in common engineer-
ng applications where the time scales of interest are of the order
f a fraction of 1 minute.

Three factors contribute to the significance of the second term
n the hyperbolic heat-conduction Eq. �9�: the �q value, the rate of
hange of temperature, and the time scale involved. The wave
ature of thermal signals will be over the diffusive behavior
hrough this term when �22�

�T

�t
�

Tr

2�q
exp�t/�q� �12�

here Tr is a reference temperature. Therefore, the wavelike fea-
ures will become significant when �1� �q is large, �2� �T /�t is
igh, or �3� t is small. Some typical situations where hyperbolic

able 1 Pennes, Wulff, Klinger, and Chen and Holmes model
ndicating blood properties, vh indicating local mean blood velo
f formation in metabolic reaction, � indicating extent of reac
erfusion bleed-off to the tissue only from the microvessels…

odel ��c�mac
t �mac

t kmac
t

ennes Constant ��c�mac
t 1 Constant kmac

t

ulff Constant ��c�mac
t 1 Constant kmac

t

linger Constant ��c�mac
t 1 Constant kmac

t

hen
nd Holmes Constant ��c�mac

t 1 keff= �1−�mac
t �kmac

b + ��k�mac
t �km

t

eat conduction differs from classical parabolic heat conduction

ournal of Heat Transfer
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include those concerned with a localized moving heat source with
a high intensity, a rapidly propagating crack tip, shock wave
propagation, thermal resonance, interfacial effects between dis-
similar materials, laser material processing, transport in biological
systems, and laser surgery �22–25,33–36�.

When �q→	 but ke=k /�q is finite, the CV constitutive relation
�8� and the hyperbolic heat-conduction equation �9� become �34�

�q�r,t�
�t

= − ke � T�r,t� �13�

and

�2T

�t2 = �e�T +
�e

ke

�F

�t
�14�

where �e=ke / ��c�, � and c are the density and the specific heat of
the material, respectively. Therefore, when �q is very large, a tem-
perature gradient established at a point of the material results in an
instantaneous heat flux rate at that point, and vice versa. Equation
�14� is a classical wave equation that predicts thermal wave propa-
gation with speed VCV, like Eq. �9�. A major difference exists,
however, between Eqs. �9� and �14�: The former allows damping
of thermal waves, the latter does not �21�.

Using the CV relation �Eq. �8�� as the constitutive relation for
qmac

t , Eq. �4� yields

����cT�mac
t

�t
+ �q

�2���cT�mac
t

�t2 = � · ��k � T�mac
t + �1 + �q

�

�t
	���qm

+ ��qc + ��qp + ��qe�mac
t �15�

This is known as a hyperbolic bioheat equation. It can well predict
the experimental results of some biological materials �28� and has
been used for the blood perfusion rate measurement �37–39�, for
the explanation of temperature oscillations in biological systems
�40�, for the prediction of temperature and thermal stress during
skin cryopreservation �41�, and for the prediction of temperature
and thermal dose distributions in living tissue during thermal
therapies �42�. The hyperbolic model also predicts considerably
different temperature and thermal damage in skin tissues under
different heating from the Pennes model �43,44� and provides
more realistic predictions both for the case of heating with a high
flux under an extremely short duration �43–45� and for the ther-
mal behavior in surgical techniques with laser and radiofrequency
heating �46�.

2.3 The Dual-Phase-Lagging Constitutive Relation. It has
been confirmed by many experiments that the CV constitutive
relation generates a more accurate prediction than the classical
Fourier law. However, some of its predictions do not agree with
experimental results either �9,25,33�. A thorough study shows that
the CV constitutive relation has only taken account of the fast-
transient effects but not the microstructural interactions. These
two effects can be reasonably represented by the dual-phase-lag

ith the confusion between qc and qp corrected „superscript b
, vp indicating mean perfusion velocity, �h indicating enthalpy
n, �b indicating blood perfusion rate, and �� indicating total

���qm�mac
t ���qc�mac

t ���qp�mac
t ���qe�mac

t

���qm�mac
t 0 ��c�mac

b 
b�Tmac
b −Tmac

t � 0
�mac

b vh�h�� −��c�mac
b vh�Tmac

t 0 0
���qm�mac

t −��c�mac
b vmac

b �Tmac
t 0 0

���qm�mac
t −��c�mac

b vp ·�Tmac
t ��c�mac

b 
��Tmac
b −Tmac

t � 0
s w
city
tio

ac
between q and �T, a further modification of Eq. �5� �25,33�,
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q�r,t + �q� = − k � T�r,t + �T� �16�

ccording to this relation, the temperature gradient at a point r of
he material at time t+�T corresponds to the heat flux density
ector at r at time t+�q. The delay time �T is interpreted as being
aused by the microstructural interactions �small-scale heat trans-
ort mechanisms occurring at the microscale or small-scale effects
f heat transport in space� such as phonon-electron interaction or
honon scattering and is called the phase-lag of the temperature
radient �25,33�. The other delay time �q is interpreted as the
elaxation time due to the fast-transient effects of thermal inertia
or small-scale effects of heat transport in time� and is called the
hase-lag of the heat flux. Both of the phase-lags are treated as
ntrinsic thermal or structural properties of the material. The cor-
esponding heat-conduction equation reads �47�

1

�

�T�r,t��
�t

= �T�r,t� − �� +
1

k
F�r,t��, t� = t + �q, � = �q − �T,

for �q − �T � 0 and t� � �q �17�

r

1

�

�T�r,t� − ��
�t

= �T�r,t�� +
1

k
F�r,t� − ��,t� = t + �T,� = �T − �q,

for �q − �T � 0 and t� � �T �18�

nlike the relation �11� according to which the heat flux is the
esult of a temperature gradient in a transient process, the relation
16� allows either the temperature gradient or the heat flux to
ecome the effect and the remaining one to be the cause. For
aterials with �q��T, the heat flux density vector is the result of
temperature gradient. It is the other way around for materials
ith �T��q. The relation �11� corresponds to the particular case
here �q�0 and �T=0. If �q=�T �not necessarily equal to zero�,

he response between the temperature gradient and the heat flux is
nstantaneous; in this case, the relation �16� is identical to the
lassical Fourier law �5�. It may also be noted that while the
lassical Fourier law �5� is macroscopic in both space and time
nd the relation �11� is macroscopic in space but microscopic in
ime, the relation �16� is microscopic in both space and time. Also
ote that Eqs. �17� and �18� are of the delay and advance types,
espectively. While the former has a wavelike solution and possi-
ly resonance, the latter does not �47�. Both single-phase-lagging
nd dual-phase-lagging heat conduction have been shown to be
dmissible by the second law of extended irreversible thermody-
amics �25�, by the Boltzmann transport equation �47,48�, and by
he Galilean principle of relativity �49�.

Expanding both sides of Eq. �16� using the Taylor series and
etaining only the first-order terms of �q and �T, we obtain the
ollowing constitutive relation that is valid at point r and time t,

q�r,t� + �q

�q�r,t�
�t

= − k��T�r,t� + �T

�

�t
��T�r,t��
 �19�

hich is known as the Jeffreys-type constitutive equation of heat
ux �34�. In literature this relation is also called the dual-phase-

agging constitutive relation. When �q=�T, this relation reduces to
he classical Fourier law �5�, and it reduces to the CV constitutive
elation �8� when �T=0.

Eliminating q from Eq. �19� and the classical energy equation
eads to the dual-phase-lagging heat-conduction equation that
eads, if all thermophysical material properties are assumed to be
onstant

�T

�t
+ �q

�2T

�t2 = ��T + ��T

�

�t
��T� +

�

k
�F + �q

�F

�t
	 �20�

his equation is parabolic when �q��T �21�. Although a wave
erm �q�

2T /�t2 exists in the equation, the mixed derivative
�T� ��T� /�t completely destroys the wave structure. The equa-
ion, in this case, therefore predicts a nonwavelike heat conduc-
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tion that differs from the usual diffusion predicted by the classical
parabolic heat conduction �6�. When �q��T, however, Eq. �20�
can be approximated by Eq. �9� and then predominantly predicts
wavelike thermal signals.

The dual-phase-lagging heat-conduction equation �20� forms a
generalized, unified equation that reduces to the classical para-
bolic heat-conduction equation when �T=�q, the hyperbolic heat-
conduction equation when �T=0 and �q�0, the energy equation
in the phonon scattering model when �=�Rc2 /3, �T= �9 /5��N, and
�q=�R �34,50�, and the energy equation in the phonon-electron
interaction model when �=k / �ce+cl�, �T=cl /G, and �q

=1 /G��1 /ce�+ �1 /cl��−1 �51–53�. In the phonon scattering model,
c is the average speed of phonons �sound speed�, �R is the relax-
ation time for the Umklapp process in which momentum is lost
from the phonon system, and �N is the relaxation time for normal
processes in which momentum is conserved in the phonon system.
In the phonon-electron interaction model, k is the thermal conduc-
tivity of the electron gas, G is the phonon-electron coupling fac-
tor, and ce and cl are the heat capacity of the electron gas and the
metal lattice, respectively. This, together with its success in de-
scribing and predicting phenomena such as ultrafast pulse-laser
heating, propagation of temperature pulses in superfluid liquid
helium, nonhomogeneous lagging response in porous media, ther-
mal lagging in amorphous materials, and effects of material de-
fects and thermomechanical coupling, heat conduction in nano-
fluids, bicomposite media, and two-phase systems �21,25,54–63�,
has given rise to the research effort on various aspects of dual-
phase-lagging heat conduction �21,25�.

The dual-phase-lagging heat-conduction equation �Eq. �20�� has
been shown to be well-posed in a finite region of n-dimensions
�n
1� under any linear boundary conditions including Dirichlet,
Neumann, and Robin types �63�. Solutions of one-dimensional
�1D� heat conduction have been obtained for some specific initial
and boundary conditions in �25,33,54,64–70�. Analytical solutions
have also been obtained in Ref. �21� for regular 1D, 2D, and 3D
heat-conduction domains under essentially arbitrary initial and
boundary conditions. The solution structure theorems were also
developed for both mixed and Cauchy problems of dual-phase-
lagging heat-conduction equations in Refs. �21,71� by extending
those theorems for hyperbolic heat conduction �36�. These theo-
rems build relationships among the contributions �to the tempera-
ture field� by the initial temperature distribution, the source term,
and the initial time-rate of the temperature change, uncovering the
structure of the temperature field and considerably simplifying the
development of solutions. Xu and Wang �72� addressed thermal
features of dual-phase-lagging heat conduction �particularly con-
ditions and features of thermal oscillation and resonance and their
contrast with those of classical and hyperbolic heat conduction�.
The issues associated with the Galilean principle of relativity have
also been discussed in Ref. �49� for both single- and dual-phase-
lagging heat-conduction models in moving media.

An experimental procedure for determining the value of �q has
been proposed in Ref. �73�. The general problem of measuring
short-time thermal transport effects has been discussed in Ref.
�74�. Three methods have been developed in Ref. �21� for mea-
suring �q. The equivalence has also been built-up in Refs.
�25,55–60� between the Fourier heat conduction in porous media
and the dual-phase-lagging heat conduction.

Tzou �25,69� also generalized Eq. �19�, for �q��T, by retaining
terms up to the second order in �q but only the term of the first
order in �T in the Taylor expansions of Eq. �16� to obtain a
�q-second-order dual-phase-lagging model

q + �q

�q

�t
+

1

2
�q

2�2q

�t2 = − k��T + �T

�

�t
��T�� �21�

For this case, the dual-phase-lagging heat-conduction equation

�20� is generalized into
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�T

�t
+ �q

�2T

�t2 +
�q

2

2

�3T

�t3 = ��T + ��T

�

�t
��T� +

�

k
�F + �q

�F

�t

+
�q

2

2

�2F

�t2 	 �22�

hich is of hyperbolic type and thus predicts thermal wave propa-
ation with a finite speed �25,69�

VT =
1

�q


2k�T

�c
�23�

he thermal wave from Eq. �9� is obviously different from that in
q. �22�. While the former is caused only by the fast-transient
ffects of thermal inertia, the latter comes from these effects, as
ell as the delayed response due to the microstructural interac-

ion. Tzou �25� refers to the former wave as the CV-wave and the
atter wave as the T-wave. By Eqs. �10� and �23�, we have

VT =
2�T

�q
VCV �24�

herefore, the T-wave is always slower than the CV-wave because
qs. �21� and �22� are valid only for �q��T. This has been shown
y the heat propagation in superfluid helium at extremely low
emperatures �25�. It is interesting to note that Eq. �21� is the
implest constitutive relation that accounts for the dual-phase-
agging effects and yields a heat-conduction equation of hyper-
olic type. If the second-order term in �T is also retained, the
esulting heat-conduction equation will no longer be hyperbolic
25�. It is also of interest to note that Eq. �22� closely resembles
he energy equation describing the ballistic behavior of heat trans-
ort in an electron gas �25,53�.

Using the DPL relation �Eq. �19�� as the constitutive relation for

mac
t , Eq. �4� yields

����cT�mac
t

�t
+ �q

�2���cT�mac
t

�t2 = � · ���k�mac
t � Tmac

t �

+ �T

�

�t
�� · ���k�mac

t � Tmac
t �� + �1 + �q

�

�t
	���qm + ��qc

+ ��qp + ��qe�mac
t �25�

his is known as the DPL model of bioheat transfer. By fitting the
xperiments data of meat samples in Ref. �28�, �T and �q were
ound to be around 0.05 s and 15 s respectively. The readers are
lso referred to Refs. �2,75� for the other types of DPL models of
ioheat transfer that developed by using Eq. �4� and the other
rder Taylor expansions of Eq. �16�.

The thermal relaxation time is normally large for biological
issue so that the DPL model of bioheat transfer has received
ncreasingly attention. A recent study of bioheat transfer in skin
issue shows that both �T and �q play a significant role for tem-
erature, thermal stress, and thermal damage of skin tissue �76�.
he study on the temperature rise behaviors in biological tissues
uring hyperthermia treatment also reveals their importance at the
arly stage of heating �77�. The DPL model also predicts signifi-
antly different temperature and thermal damage in laser-
rradiated biological tissues from both the hyperbolic thermal
ave and the Fourier-type Pennes models �78,79�.

Scaling-Up by Porous-Media Theory
To develop a macroscale model of heat transport in living bio-

ogical tissues, the method of volume averaging starts with a mi-
roscale description. Both conservation and constitutive equations
re introduced at the microscale. The resulting microscale field
quations are then averaged over a representative elementary vol-
me �REV�, the smallest differential volume resulting in statisti-
ally meaningful local averaging properties, to obtain the macros-

ale field equations. In the process of averaging, the multiscale
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theorems are used to convert integrals of gradient, divergence,
curl, and partial time derivatives of a function into some combi-
nation of gradient, divergence, curl, and partial time derivatives of
integrals of the function and integrals over the boundary of the
REV �6�. Often in order to make averaging procedure tractable
and to obtain desirable results, some assumptions are made be-
fore, during, and after averaging. These assumptions typically re-
late to the spatial and/or temporal distribution of properties, ex-
pected order of magnitude of various terms, and existence of
certain relations among various properties, all based on intuitive
and somewhat heuristic arguments.

The macroscale field equations obtained are not a closed system
for determination of velocity, pressure, and temperature because
of unclosed terms reflecting the microscale effect. To form a
closed system, the approach used for Reynolds-stress closures in
turbulence is usually employed to develop governing differential
equations and boundary conditions for spatial deviations of pres-
sure, velocity and temperature, the difference between microscale
and macroscale values �80–85�. Resulting closure model is a set
of differential equations defined on the microscale, which is dif-
ficult to solve due to complex microscale geometry. The closure
problem is usually solved over a unit cell for a spatially periodic
model of a porous medium. This leads to a local closure problem
in terms of closure variables and a method of predicting the mac-
roscale parameters in the macroscale models. The readers are re-
ferred to Refs. �6,86,87� for the details of the method of volume
averaging and to Ref. �6� for a summary of the other methods of
obtaining macroscale models.

3.1 Microscale Model. For developing a set of the volume-
averaged �macroscale� governing equations for the blood flow and
bioheat transfer, biological tissue is simplified to be a blood-
saturated porous matrix including cells and interstices, the so-
called tissue that is considered as a solid matrix �4�. Neglect the
gravitational effect and assume that blood is incompressible and
Newtonian. By the conservation of mass, momentum, and energy
and the Fourier law of heat conduction, we have the microscale
model for blood flow and heat conduction in biological tissues
�Fig. 1� �4�

In the blood phase,

� · vmic
b = 0 �26�

�mic
b �vmic

b

�t
+ �mic

b vmic
b · �vmic

b = − �pmic
b + �mic

b �2vmic
b �27�

��c�mic
b ��mic

b

�t
+ ��c�mic

b vmic
b · ��mic

b = � · �kmic
b � �mic

b � �28�

In the tissue phase,

��c�mic
t ��mic

t

�t
= � · �kmic

t � �mic
t � + �qm�mic

t �29�

Boundary conditions,

B.C.1 vmic
b = �vmic

b �A at Abt �30�

Fig. 1 Blood-saturated porous media and REV
bt
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B.C.2 Tmic
b = Tmic

t at Abt �31�

B.C.3 nbt · kmic
b � Tmic

b = nbt · kmic
t � Tmic

t at Abt �32�
ere the subscript “mic” is used to indicate the microscale prop-

rties. Superscripts b and t refer to the blood and tissue phases,
espectively. v, p, and T are the velocity, the pressure, and the
emperature, respectively. �, �, c, and k are the density, the vis-
osity, the specific heat, and the thermal conductivity, respec-
ively. qm is the volumetric rate of heat generation by the meta-
olic reaction. Abt represents the area of the blood-tissue interface
ontained in the REV; nbt is the outward-directed surface normal
rom the b-phase toward the t-phase, and nbt=−ntb �Fig. 1�.

3.2 Scaling-Up by Volume Averaging. By applying the su-
erficial averaging process to Eqs. �26�, �28�, and �29�, we have

1

VREV�
Vb

� · vmic
b dV = 0 �33�

1

VREV�
Vb

��c�mic
b ��mic

b

�t
dV +

1

VREV�
Vb

��c�mic
b vmic

b · �Tmic
b dV

=
1

VREV�
Vb

� · �kmic
b � Tmic

b �dV �34�

nd

1

VREV�
Vt

��c�mic
t ��mic

t

�t
dV =

1

VREV�
Vt

� · �kmic
t � �mic

t �dV

+
1

VREV�
Vt

�qm�mic
t dV �35�

here VREV, Vb, and Vt are the volumes of the REV, blood in
EV, and tissue in REV, respectively. We should note that the

uperficial temperature is evaluated at the centroid of the REV,
hereas the phase temperature is evaluated throughout the REV.
eglecting variations of �c within the REV and considering the

ystem to be rigid so that Vb and Vt are time independent, the
olume-averaged form of Eqs. �26�, �28�, and �29� are

�� · vmic
b � = 0 �36�

��c�mac
b ��Tmic

b �
�t

+ ��c�mac
b �vmic

b · ��mic
b � = �� · �kmic

b � Tmic
b ��

�37�
nd

��c�mac
t ��Tmic

t �
�t

= �� · �kmic
t � Tmic

t �� + ��qm�mic
t � �38�
here the angular brackets indicate superficial quantities such as

nd
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�Tmic
b � =

1

VREV�
Vb

Tmic
b dV �39�

and

�Tmic
t � =

1

VREV�
Vt

Tmic
t dV �40�

Applying the spatial averaging theorem �Theorem 40 in Ref. �6��
to Eq. �36� leads to

�� · vmic
b � = � · �vmic

b � +
1

VREV�
Abt

nbt · vmic
b dA = 0 �41�

The surface integral represents the volumetric rate of blood bleed-
ing off to the solid matrix through the interfacial vascular wall.
Most microcirculatory systems are with a capillary blood filtration
larger than reabsorption so that there is a net filtration of blood
from the intravascular to the extravascular regions. However, this
surface integral is negligibly small because the lymphatic system
brings the excess blood from the interstitium to the intravascular
compartment �4�. Therefore, Eq. �41� reduces into

� · �vmic
b � = 0 �42�

Note that the superficial average defined in Eqs. �39� and �40� is
an unsuitable macroscale variable because it can yield erroneous
results. For example, if the temperature of the blood were con-
stant, the superficial average would differ from it �88�. On the
other hand, intrinsic phase averages do not have this shortcoming.
These averages are defined by

�Tmic
b �b =

1

Vb�
Vb

Tmic
b dV �43�

and

�Tmic
t �t =

1

Vt�
Vt

Tmic
t dV �44�

Also, intrinsic averages are related to superficial averages by

�Tmic
b � = �b�Tmic

b �b �45�

and

�Tmic
t � = �t�Tmic

t �t �46�

where �b and �t are the volume fractions of the blood and tissue
with �t=1−�b.

By applying Eqs. �42�, �45�, and �46� and the spatial averaging
theorem �Theorem 40 in Ref. �6�� and neglecting variations of

physical properties within the REV, Eqs. �37� and �38� become
���c��mac
b ��Tmic

b �b

�t

accumulation

+ ��c��mac
b �vmic

b �b · ��Tmic
b �b

convection

= � ·�kmac
b ��mac

b � �Tmic
b �b +

1

VREV�
Abt

nbtTmic
b dA	

conduction

˜
˜

1
− ��c�mac

b � · �vmic
b Tmic

b �

dispersion

+
VREV�

Abt

nbt · kmic
b � Tmic

b dA

interfacial flux

˜

− ��c�mac
b 1

VREV�
Abt

nbt · vmic
b Tmic

b dA

perfusion �47�
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− ��c�mac
b 1

VREV�
Abt

ntb · vmic
b Tmic

b dA

perfusion

��c��mac
t ��Tmic

t �t

�t

accumulation

= � ·�kmac
t ��mac

t � �Tmic
t �t +

1

VREV�
Abt

ntbT
˜

mic
t dA�	

conduction

+
1

VREV

interfacial flux

�
Abt

ntb · kmic
t � Tmic

t dA + �mac
t ��qm�mic

t �t

metabolic
thermal source

�48�
ere ṽmic
b =vmic

b − �vmic
b �b, T̃mic

b =Tmic
b − �Tmic

b �b, and T̃mic
t =Tmic

t

�Tmic
t �t. A rigorous closure is not available at present for these

patial deviation velocity and temperature in the context of bio-
eat transfer. Nakayama and Kuwahara �4� recently modeled the
lood interfacial convective heat transfer by using the Newton law
f cooling and approximated the effect of the blood perfusion by
sing the perfusion rate and macroscale temperature difference
etween blood and tissues. This leads to a simplified two-equation
acroscale model

��c��mac
b � �Tmac

b

�t
+ vmac

b · �Tmac
b 	 = � · �Kmac

b · �Tmac
b � + ���qc�mac

b

+ ���qp�mac
b �49�

nd

��c��mac
t �Tmac

t

�t
= � · �Kmac

t · �Tmac
t � + ���qc�mac

t + ���qp�mac
t

+ ��qm�mac
t �50�

here

Tmac
b = �Tmic

b �b �51�

Tmac
t = �Tmic

t �t �52�

Kmac
b = ��k�mac

b + �kdis�mac
bt �53�

Kmac
t = ��k�mac

t �54�

���qc�mac
b = − ���qc�mac

b = − ha�Tmac
b − Tmac

t � �55�

���qp�mac
b = − ���qp�mac

b = − ��c
�mac
b �Tmac

b − Tmac
t � �56�

ere Kmac
b and Kmac

t are the effective thermal conductivity tensor
f blood and tissue, respectively, k is the thermal conductivity
ensor, kdis is the thermal dispersion conductivity tensor, h is the
onvective heat transfer coefficient �W /m2 K�, a is the volumetric
ontact area between tissue and blood �m2 /m3�, and 
 is the
erfusion rate �kg /m3 s�. Therefore, the microscale effects are
epresented by kdis, ha, and 
 in Eqs. �49� and �50�. A rigorous
heory regarding kdis, ha, and 
 is, however, not available at
resent.

A similar averaging has also been applied to blood momentum
quation �Eq. �27��. The result is available, for example, in Refs.
84–86,88�. To examine the countercurrent heat exchange be-
ween the arterial and venous blood vessels in the circulatory sys-
ems, a three-energy equation model has also been developed in
ef. �4� by following a similar approach.
When the system is isotropic and the physical properties of
lood and tissue are constant, Eqs. �49� and �50� reduce to
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�mac
b � �Tmac

b

�t
+ vmac

b · �Tmac
b 	 = �keff�mac

b �Tmac
b − ha�Tmac

b − Tmac
t �

− ��c
�mac
b �Tmac

b − Tmac
t � �57�

and

�mac
t �Tmac

t

�t
= �keff�mac

t �Tmac
t + ha�Tmac

b − Tmac
t � + ��c
�mac

b �Tmac
b

− Tmac
t � + ��qm�mac

t �58�

where the effective thermal conductivities �keff�mac
b and �keff�mac

t

are

�keff�mac
b = ��k�mac

b + �kdis�mac
bt �59�

�keff�mac
t = ��k�mac

t �60�

The effective thermal capacities �mac
b and �mac

t are

�mac
b = ��c��mac

b �61�

�mac
t = ��c��mac

t �62�

3.3 Analysis. Rewrite Eqs. �57� and �58� in their operator
form

��mac
b �

�t
+ �mac

b vmac
b · �− �keff�mac

b � + G − G

− G �mac
t �

�t
− �keff�mac

t � + G�
��Tmac

b

Tmac
t � = � 0

��qm�mac
t � �63�

where the lumped convection-perfusion coefficient G is

G = ha + ��c
�mac
b �64�

We then obtain an uncoupled form by evaluating the operator
determinant and dividing by G��mac

b +�mac
t �

�Tmac
b

�t
+ �q

�2Tmac
b

�t2 +
�mac

b

�mac
b + �mac

t vmac
b · �Tmac

b = ��Tmac
b

+ ��T

�

�t
��Tmac

b � +
�

k
�F�r,t� + �q

�F�r,t�
�t

�
mac

b

�65�

�Tmac
t

�t
+ �q

�2Tmac
t

�t2 +
�mac

b

�mac
b + �mac

t vmac
b · �Tmac

t = ��Tmac
t

+ ��T

�

�t
��Tmac

t � +
�

k
�F�r,t� + �q

�F�r,t�
�t

�
mac

t

�66�
where
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�q =
�mac

b �mac
t

G��mac
b + �mac

t �
�67�

�T =
�mac

b �keff�mac
t + �mac

t �keff�mac
b

G��keff�mac
b + �keff�mac

t �
�68�

k = �keff�mac
b + �keff�mac

t �69�

�c = �mac
b + �mac

t �70�

� =
k

�c
=

�keff�mac
b + �keff�mac

t

�mac
b + �mac

t �71�

�F�r,t� + �q

�F�r,t�
�t

�
mac

b

= ��qm�mac
t −

�keff�mac
b �keff�mac

t

G
�2Tmac

b

−
�mac

b

G
vmac

b · ��mac
t �

�t
� Tmac

b

− �keff�mac
t � �Tmac

b � �72�

�F�r,t� + �q

�F�r,t�
�t

�
mac

t

= −
�keff�mac

b �keff�mac
t

G
�2Tmac

t

−
�mac

b

G
vmac

b · ��mac
t �

�t
� Tmac

t

− �keff�mac
t � �Tmac

t � +
1

G
��mac

b �

�t

+ �mac
b vmac

b · �− �keff�mac
b � + G���qm�mac

t

�73�

herefore, both Tmac
b and Tmac

t are governed by dual-phase-lagging
eat-conduction equations �Eqs. �65� and �66�� with �q and �T as
he phase lags of the heat flux and the temperature gradient, re-
pectively �21,25,89�. Here, F�r , t� is the volumetric heat source.
, �c, and � are the effective thermal conductivity, capacity, and
iffusivity, respectively. While the heat conduction in blood and
issue is assumed to be Fourier-type at microscale �Eqs. �28� and
29��, it is DPL-type at macroscale. It is thus more proper to use
he DPL constitutive relation for the heat flux density vector in
eveloping macroscale bioheat equations via scaling-down from
he global scale based on the mixture theory of continuum

echanics.
Although both Eqs. �25� and �66� are of DPL-type for macros-

ale tissue temperature, the distinct difference exists between
hem. The explicit relation between Tmic

t and Tmac
t and the way for

omputing �q and �T are not available in the former; they are
vailable in the latter �Eqs. �52�, �67�, and �68��. The former in-
olves both Tmac

b and Tmac
t ; the latter contains only the tissue tem-

erature Tmac
t . The effect of blood conduction and convection is

ot considered in the former; it is incorporated in the latter.
There is a metabolic heat term ��qm�mac

t in the blood energy
quation �Eqs. �65� and �72�� and a convective term vmac

b ·�Tmac
t in

he tissue energy equation �Eq. �66��. Therefore, both microscale
etabolic heat generation in tissue and microscale convection in

lood are with their macroscale manifestation in both blood and
issue. The interaction between blood and tissue also yields a very
ich way that the interfacial convective heat transfer, the blood
elocity, the perfusion, and the metabolic reaction affect Tmac

b and

mac
t �Eqs. �65�, �66�, �72�, and �73��. It would be very difficult to
odel this rich interaction by the mixture theory of continuum
echanics.

Consider
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�T

�q
= 1 +

��2�mac
b �keff�mac

t + ��2�mac
t �keff�mac

b

�mac
b �mac

t ��keff�mac
b + �keff�mac

t �

 1 �74�

By the condition for the existence of thermal waves that requires
�T /�q�1 �21,72�, therefore, there is no thermal wave in bioheat
transfer based on the model in Eqs. �65� and �66�. It is also inter-
esting to note that although each �q and �T is G dependent, the
ratio �T /�q is not. Therefore the evaluation of �T /�q will be much
simpler than �q or �T. Based on some simplified versions of Eq.
�66�, the lagging behavior has been recently examined in Refs.
�75,90�.

4 Concluding Remarks
Macroscale thermal models have been developed for biological

tissues either by the mixture theory or by the porous-media theory.
The former considers blood and tissues as a mixture of continuum
deformable media and develops the macroscale point equations
via scaling-down the global balance equations. In this approach,
neither microscale presentation of the system nor microscale
quantities are introduced. Phase properties are defined at the mac-
roscale. The global balance equations are formed in terms of mac-
roscale properties and with additional terms accounting for the
interaction between blood and tissue. Required constitutive equa-
tions for the heat flux vector are supplied by the Fourier law, the
CV relation, or the DPL relation. The thermal models developed
in this approach include the classical Pennes model, the Wulff
model, the Klinger model, and the Chen and Holmes model, the
thermal wave bioheat model, and the DPL bioheat model. The
heterogeneous and nonisotropic feature of biological tissue yields
normally a strong noninstantaneous response between heat flux
and temperature gradient in nonequilibrium heat transport. The
DPL bioheat model is thus recommended in order to catch such a
lagging behavior.

The porous-media theory considers biological tissue as a blood-
saturated porous matrix, including cells and interstices, and devel-
ops the macroscale point equations via scaling-up the microscale
model. In this approach, both conservation and constitutive equa-
tions are introduced at the microscale. The resulting microscale
field equations are then averaged over a REV to obtain the mac-
roscale field equations. In the process of averaging, the multiscale
theorems are used to convert integrals of gradient, divergence,
curl, and partial time derivatives of a function into some combi-
nation of gradient, divergence, curl, and partial time derivatives of
integrals of the function and integrals over the boundary of the
REV. The closure model must be provided for the unclosed terms
in macroscale field equations that represent the microscale effect
in order to form a closed system. The macroscale model devel-
oped by this approach shows the DPL-type bioheat transfer at
macroscale for both blood and tissue phases and the sophisticated
effect of the interfacial convective heat transfer, the blood veloc-
ity, the perfusion, and the metabolic reaction on macroscale tem-
perature fields in blood and tissue.

Therefore, the mixture theory and porous-media approaches are
top-down and bottom-up approaches, respectively, in nature. Sim-
plicity is the main advantage of the former. However, it offers no
connection between microscale and macroscale properties and is
not capable to accurately describe the rich blood-tissue interac-
tion. The porous-media approach successfully overcomes these
drawbacks, thereby offering an effective way for developing ac-
curate macroscale thermal models for biological tissues. The re-
quirement of a rigorous closure model presents, however, unique
challenges for materializing its promising potential. Future re-
search is in great demand to define the potential of this promising
approach by developing a rigorous closure theory.
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