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a b s t r a c t

We examine numerically the effects of particle-fluid thermal conductivity ratio, particle volume fraction,
and particle morphology on nanofluids effective thermal conductivity and phase lags of heat flux and
temperature gradient, for six types of nanofluids containing sphere, cube, hollow sphere, hollow cube,
slab-cross and column-cross nanoparticles, respectively. The particle’s radius of gyration and the non-
dimensional particle-fluid interfacial area are found to be two characteristic parameters for the effect
of particles’ geometrical structure on the effective thermal conductivity. The nanoparticles with larger
values of these two parameters can change fluid conductivity more significantly. Due to the enhanced
particle-fluid interfacial heat transfer, the nanofluid effective thermal conductivity can practically reach
the Hashin–Shtrikman bounds when the particle-phase connects to form a network and separates the
base fluid into a dispersed phase. The particle aggregation can effectively affect the effective thermal con-
ductivity when the separation distance among particles is smaller than about one fifth of the particles’
dimension. For the nanofluids considered in the present work, the phase lags of heat flux and tempera-
ture gradient scale with the square of particle dimension and range from 10�11 s to 10�7 s; the effect of
cross-coupling between the heat conduction in the fluid and particle phases is weak; the phase lag of
temperature gradient is larger than that of heat flux such that the heat conduction in them is diffu-
sion-dominant and their effective thermal conductivity can be well predicted by the predictive models
developed in the present work based on the classical diffusion theory for two-phase systems.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Nanofluids, fluid suspensions of nanometer-sized structures,
have recently been demonstrated to have thermal conductivities
far superior to that of the fluid alone [1–4]. This and their other dis-
tinctive features offer unprecedented potential for many applica-
tions in various fields including energy, bio- and pharmaceutical
industry, and chemical, electronic, environmental, material, medi-
cal and thermal engineering [1–4].

In an attempt to identify effects of microscale physics on ther-
mal conductivity, a relatively intensified effort has been made on
determining thermal conductivity of nanofluids from experiments,
particularly for nanofluids with spherical nanoparticles or nano-
tubes. While the data from these experiments have enabled some
trends to be identified, there is still no consensus on the effects
of some parameters such as particle size, shape, distribution and
additives in the nanofluids [1–5]. Wide discrepancies and inconsis-
tencies also exist in the reported conductivity data due to a limited
understanding of the precise nature of heat conduction in nanofl-
uids, the poor microstructure characterization and the unavailabil-
ity of nanofluids with various microstructures [1–5]. In many cases
ll rights reserved.
the microstructural parameters were not measured by the
experimenters themselves but rather taken from the powder
manufacturers’ nominal information.

Suggested reasons for the experimental finding of significant
conductivity enhancement include nanoparticles’ Brownian mo-
tion [6–8], liquid layering at the liquid-particle interface [9,10],
particle-phase morphology [11–19] and coupled (cross) transport
[19–21]. Here, the effect of particle morphology contains those
from the particle shape, connectivity among particles (including
and generalizing the nanoparticle clustering/aggregating in the lit-
erature), and particles’ distribution in nanofluids. The critical
assessment of these contributions signifies the importance of par-
ticle morphology and coupled transport in determining nanofluid
heat conduction and thermal conductivity [19,22,23]. While the di-
rect contributions of ordered liquid layer and particles’ Brownian
motion to the nanofluid conductivity is negligible, their indirect ef-
fects can be significant via their influence on the particle-phase
morphology and/or the coupled transport [19].

In a nanofluid system, there are normally two or more transport
processes that occur simultaneously. The cross coupling among
these processes causes new induced flows occurring without or
against its primary thermodynamic driving force and is capable of
changing the nature of heat conduction via inducing thermal waves
and resonance of various orders [19–21]. Depending on the

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.05.009
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Nomenclature

Afp particle-fluid interface area inside the unit cell
a side length of the cube
ac side length of the square column of the column-cross

particle
ai inner side length of the hollow cube
ao outer side length of the hollow cube
as slab side length of the slab-cross particle
av interfacial area per unit volume
bI closure variable
cp specific heat
dp diameter of the sphere particle
h interfacial heat transfer coefficient
IA non-dimensional interfacial area in the unit cell
k thermal conductivity
ke effective thermal conductivity
kff, kfp, kpf, kpp macroscale effective thermal conductivity coeffi-

cients
LA distance between each particle and the center plane of

the unit cell containing eight sphere particles
lc column length of the column-cross particle
lu dimension of the unit cell
n a parameter depending on particle morphology and kp/

kf in Eq. (29)

nfp utwardly-directed unit normal vector pointing from the
base fluid to the particle

Rg radius of gyration
r radius of the sphere
ri inner radius of the hollow sphere
ro outer radius of the hollow sphere
S closure variable
Vf fluid volume inside the unit cell
Vp particle volume inside the unit cell
ws slab thickness of the slab-cross particle
X a parameter depending on particle morphology and kp/

kf in Eq. (28)
u particle volume fraction
q density
sq phase lag of heat flux
sT phase lag of temperature gradient

Subscripts
f base fluid phase
p particle phase
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microscale physics (factors like material properties of nanoparticles
and base fluid, nanoparticles’ morphology in the base fluid, and
interfacial properties and dynamic processes on particle-fluid
interfaces), the heat diffusion and thermal waves may either
enhance or counteract each other. It is thus important to quantify
when and to what extent thermal waves become important.

The particle-phase morphology in nanofluids can vary from a
well-dispersed configuration in base fluids to an interconnected
configuration as a continuous phase. Such a morphology variation
will change nanofluid effective thermal conductivity significantly
[24], a phenomenon credited to the particle clustering/aggregation
in the literature. Although nanofluid thermal conductivity depends
heavily on the morphology of nanoparticles, its lower and upper
bounds can be completely determined by the volume fractions
and conductivities of the two phases. Without considering the ef-
fect of interfacial resistance and cross coupling among various
transport processes, these bounds have been well developed based
on the classical effective-medium theory and termed as the
Hashin–Shtrikman (H–S) bounds [25]. However, the microscopic
mechanism responsible for these bounds has been left unad-
dressed. Furthermore, the theory of H–S bounds has not offered
the answers to questions regarding parameters that characterize
the effects of particles’ geometrical structures and contributions
of the two phases to the effective conductivity.

The present work attempts to address these key issues based on
the first-principle model of heat conduction in nanofluids with
cross-coupling between the heat conduction in the fluid and parti-
cle phases being considered [20,21,26]. Especially, we address
these issues numerically for six types of nanofluids containing in-
line arrays of spheres, squares, hollow spheres, hollow squares, col-
umn-cross particles and slab-cross particles, respectively
[Fig. 1(a)–(f)]. While the theoretical model and numerical scheme
are the three-dimensional (3D) extension of two-dimensional
(2D) version used in [24], the present work employs different par-
ticle shapes to examine the dependency of effective thermal con-
ductivity on the particles’ morphology and to identify the
characteristic parameters for the effect of particles’ morphology
in practical 3D nanofluids. The present work also addresses the
following key issues that have not been addressed in [24]: (i)
contributions of the base fluid, particles, and cross-coupling heat
conduction between the fluid and particle phases to nanofluid
effective thermal conductivity, (ii) microscopic mechanism respon-
sible for H–S bounds, (iii) phase lags of temperature gradient and
heat flux, and (iv) predictive models of effective thermal conduc-
tivity for six types of 3D nanofluids.
2. Governing equations and numerical algorithm

We consider six types of nanofluids containing in-line arrays of
spheres, cubes, hollow spheres, hollow cubes, slab-cross particles
(consisting of three mutually perpendicular square slabs), and col-
umn-cross particles (consisting of three mutually perpendicular
square columns), respectively, thus their microstructures can be
represented by the unit cells in Fig. 1(a)–(f). In Fig. 1, lu denotes
the dimensions of the unit-cell in all x-, y- and z-directions.

For these nanofluids, their effective thermal conductivity ke,
phase lag of heat flux sq and phase lag of temperature gradient
sT are [20]:
ke ¼ kff þ kfp þ kpf þ kpp; ð1Þ

sq ¼
cfcp

havðcf þ cpÞ
; ð2Þ

sT ¼
cf kpp þ cpkff

havke
; ð3Þ

where

kff ¼ ð1�uÞkf þ
Z

Afp

nfpkf bI dA; ð4Þ

kfp ¼ kpf ¼ �
Z

Afp

nfpkpbI dA; ð5Þ
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Fig. 1. Unit cells for nanofluids containing in-line arrays of spheres (a), cubes (b), hollow spheres (c), hollow cubes (d), slab-cross particles (e), and column-cross particles (f);
the enlarged sketches for the last four particles with geometrical parameters marked in (c0)–(f0).
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kpp ¼ ukp þ
kp

kf

Z
Afp

nfpkpbI dA; ð6Þ

hav ¼
uR

Vp
SdV

; ð7Þ

cf ¼ ð1�uÞðqcpÞf ; cp ¼ uðqcpÞp: ð8Þ

Heat conduction is diffusion dominant when sT/sq > 1 and thermal-
wave dominant when sT/sq < 1 [20,21]. In Eqs. (1)–(8), subscripts f
and p denote fluid- and particle-phases, respectively. u is the parti-
cle volume fraction. kf and kp are the thermal conductivities of the
base fluid and the particles, respectively. nfp is the outwardly-
directed unit normal vector pointing from the base fluid to the
particle. q and cp are the density and specific heat, respectively.
Afp and Vp are the particle-fluid interface area and the particle
volume inside the unit cell respectively. kff and kpp are effective
thermal conductivity coefficients representing the contribution of
fluid and particle phases respectively to the effective thermal
conductivity. kfp and kpf are cross-coupling thermal conductivity
coefficients that come from, and thus characterize the importance
of, the cross-coupling between heat conduction in the fluid and par-
ticles; and kfp ¼ kpf [27]. All these four coefficients depend on the
distribution of bI, which is a closure variable that links microscale
and macroscale through the following closure problem I [20,27].
hav is the volumetric particle-fluid interfacial heat transfer
coefficient, with av being the interfacial area per unit volume. The
value of hav depends on the closure variable S which also links
microscale and macroscale and satisfies the closure problem II
[20,27].
2.1. Problem I

r � ðkrbIÞ ¼ �r � ð/f kÞ ð9aÞ

bIðxþ luÞ ¼ bIðxÞ; bIðyþ luÞ ¼ bIðyÞ; bIðzþ luÞ ¼ bIðzÞ ð9bÞ
Z

V f

bI dV ¼ 0;
Z

Vp

bI dV ¼ 0 ð9cÞ
2.2. Problem II

r � ðkrSÞ ¼ �
/p

u
� /f

1�u

� �
ð10aÞ

Sðxþ luÞ ¼ SðxÞ; Sðyþ luÞ ¼ SðyÞ; Sðzþ luÞ ¼ SðzÞ ð10bÞ
Z

V f

SdV ¼ 0; hav

Z
Vp

SdV ¼ u ð10cÞ
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where Vf stands for the fluid volume inside the unit cell; /f ; /p and
k are defined by

/f ¼
1; in V f

0; in Vp

�
; /p ¼

0; in V f

1; in Vp

�
; k ¼

kf ; in V f

kp; in Vp

�
ð11Þ

For the nanofluids considered in the present work, their unit
cells are symmetric with respect to all three coordinates x, y and
z. By using the periodic boundary conditions [Eqs. 9(b) and
10(b)], we can readily obtain that

bI �
lu

2
; y; z
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lu
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Since the solutions of Problems I and II are unique, we can replace
the periodic boundary conditions [Eqs. (9b) and (10b)] by Eqs.
(12a)–(12f) without changing their final solutions.

Problems I and II with boundary conditions (12a)–(12f) are
solved numerically. The numerical scheme, based on the finite vol-
ume method, is an adaptation of that in [28,29]. The main features
of this method include a central difference scheme for the diffusion
terms and an equation-solving scheme consisting of an alternat-
ing-direction line-by-line iterative procedure (ADI) with block-cor-
rection technique.

The non-uniform structural grid is used for the whole unit cell,
making the particle-fluid interface covered with finer grid. We
check the variation of computational results by reducing the grid
size into a half until the variation is less than 1% so that the results
are considered to be grid-size independent. The solution is
assumed to be convergent in a numerical sense if the maximum
relative error of the computed variables over the whole unit cell
is less than 10�8 between successive iterations.

The initial calculation for nanofluid containing suspended
spheres [Fig. 1(a)] with u ¼ 0:01;0:03 and 0.05 is performed to
verify the code and the accuracy. In Fig. 2(d), the variation of
ke/kf (ratio between the nanofluid effective thermal conductivity
and the base-fluid conductivity) with kp/kf is compared with the
prediction of Maxwell–Garnett formula [30],

ke

kf
¼ 1þ 3uðkp=kf � 1Þ

kp=kf þ 2�uðkp=kf � 1Þ ð13Þ

showing an excellent agreement.

3. Results and discussion

3.1. Contributions of base fluid, particles and cross-coupling, and
particle-fluid interfacial energy transport

kff, kpp and 2kfp represent the contributions of base fluid, parti-
cles, and cross-coupling between the heat conduction in the fluid
and particle phases respectively, to the effective thermal conduc-
tivity ke. hav characterizes the strength of particle-fluid interfacial
energy transport. Fig. 2(a)–(e) illustrates variations of kff=kf , kfp=kf ,
kpp=kf ; ke=kf (normalized by the base-fluid conductivity kf ), and
interfacial heat transfer coefficient havl2

u=kf (normalized by kf=l2
uÞ

with particle-fluid conductivity ratio kp=kf , particle volume frac-
tion u and particle morphology for nanofluids in Fig. 1(a)–(d).
The inner radius (ri) and inner side length (ai) of the hollow sphere
and hollow cube are taken as a half of their respective outer coun-
terparts (ro) and (ao).

The variations of kff/kf, kfp/kf, and kpp/kf have some similar fea-
tures with those in two-dimensional cases: all increase with parti-
cle-fluid thermal conductivity ratio kp/kf; their sensitivity to the
particle shape is stronger at larger particle volume fraction; the
kff/kf approaches to the limit value ð1�uÞ as kp/kf increases to
infinity; kff/kf (kpp/kf) is nearly independent of the particle shape
when kp=kf is larger (smaller) than 1. Since the particles can be
well regarded as the dispersed phase, the coefficient kfp=kf is not
sensitive to particle shape either, and towards to the limit value
uð0Þ as kp=kf increases to infinity (decreases to 0). As the parti-
cle-fluid conductivity ratio kp=kf increases from 0 to infinity,
ke=kf increases from a lower limit to a higher limit, both of which
depend on the particle shape and volume fraction [Fig. 2(d)]. When
the particle-fluid conductivity ratio kp=kf is either sufficiently large
or sufficiently small such that the particle can be regarded as either
isothermal or adiabatic, therefore, the nanoparticle’s conductivity
has a negligible effect on the effective thermal conductivity. This
phenomenon is also consistent with the two-dimensional cases
under small radius of gyration and particle-fluid interfacial area
in a unit cell [31].

In 3D nanofluids, the particle shape with lower values of kff=kf

at kp=kf < 1 does not necessarily lead to higher values of kpp=kf

at kp=kf > 1 at certain particle volume fraction u, [the cube and
hollow-sphere particles in Fig. 2(a) and (c)]. This differs from that
in 2D nanofluids [24,31]. The cube nanofluid has thus a higher
effective thermal conductivity ratio ke=kf than the hollow-sphere
nanofluid for both kp=kf < 1 and kp=kf > 1 [Fig. 2(d)]. Moreover,
the sensitivities of ke=kf to the particle shape, kp=kf and u are obvi-
ously stronger at kp=kf > 1 than kp=kf < 1. This phenomenon also
differs from that in 2D nanofluids in which particles can be well
treated as the dispersed phase [24,31].

The havl2
u=kf increases with kp=kf and u for all four types of

nanofluids as shown in Fig. 2(e). A different feature from 2D nano-
fluids is the intersection of the cube-line and the hollow-sphere-
line for certain particle volume fraction. It is interesting to note
that a particle shape with a higher value of havl2

u=kf always leads
to a higher (lower) ke=kf when kp=kf > 1 ðkp=kf < 1Þ. Therefore, a
stronger fluid-particle interfacial heat transfer is the key to up-
grade nanofluid thermal conductivity.

3.2. Parameters for characterizing effects of 3D geometrical structures
of particles

The 2D simulation suggested two parameters for characterizing
particle geometrical effect on nanofluid thermal conductivity [24]:
the radius of gyration Rg and the non-dimensional particle-fluid
interfacial area IA in the unit cell. The former is defined as the root
mean square distance of each point of the particle from its centroi-
dal axis, and thus characterizes the overall spread of the particle.
The latter is the particle-fluid interfacial area in the unit cell with
all lengths normalized by the unit cell dimension lu. For fixed
particle volume fraction, IA depends only on the particle shape
and could thus serve as a candidate of characterizing particle
geometrical effect. Table 1 lists Rg and IA as functions of the non-
dimensional particle geometrical parameters for the six types of
nanoparticles in Fig. 1(a)–(f). For nanoparticles in Fig. 1(a)–(d),
the respective geometrical parameters are the radius r of sphere,
the side length a of cube, the inner and outer radiuses ri and ro,
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u=kf (e) with particle-fluid conductivity ratio kp=kf , particle volume

fraction u and particle morphology.
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and the inner and outer side lengths ai and ao. For the slab-cross
particle in Fig. 1(e), the geometrical parameters include the slab
thickness ws and the side length as of the square slab (Fig. 1 (e0)).
For the column-cross particle in Fig. 1(f), the geometrical parame-
ters contain the side length ac of the square column and the
column length lc (Fig. 1 (f0)).



Table 1
Particle volume fraction u, radius of gyration Rg and non-dimensional particle-fluid interfacial area IA for nanofluids in Fig. 1(a)-(f) ð�v ¼ v=luÞ.

Nanofluids Volume fraction u Radius of gyration Rg Non-dimesnional particle-fluid interfacial area IA
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To address whether Rg and IA are still the characterizing param-
eters in 3D nanofluids, we examine kff/kf, kfp/kf, kpp/kf, havl2

u=kf and
ke/kf in Fig. 3 for nanofluids containing the slab-cross and column-
cross particles [Fig. 1(e) and (f)] at u ¼ 0:05. For the same radius of
gyration and non-dimensional interfacial area for both cases, par-
ticle dimensions are fixed by
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4�a2

c þ 2�l2
c

q
6

ðsame RgÞ ð14Þ

6ð�as � �wsÞ2 ¼ 12�acð�lc � �acÞ ðsame IAÞ ð15Þ

3 �ws�a2
s � 3 �w2

s �as þ �w3
s ¼ 0:05 ðu ¼ 0:05Þ ð16Þ

3�a2
c
�lc � 2�a3

c ¼ 0:05 ðu ¼ 0:05Þ ð17Þ

Fig. 3 clearly shows that kff/kf, kfp=kf , kpp=kf , havl2
u=kf and ke=kf are

almost the same for two particles. Therefore, the radius of gyration
and non-dimensional interfacial area are two very important
parameters to characterize the effects of particles’ geometrical
structures.

Fig. 4 plots the variation of ke=kf for three types of nanofluids
[Fig. 1(c)–(e)], with the same IA (at the same particle volume frac-
tion) but different Rg, showing that ke=kf increases with Rg when
kp=kf > 1, but decreases when kp=kf < 1. The IA-effect on ke=kf is
shown in Fig. 5 at the same Rg (at the same particle volume frac-
tion) for the three types of nanofluids [Fig. 1(c)–(e)]. An upgrade
of particle IA-value will boast ke=kf when kp=kf > 1 and decrease
ke=kf when kp=kf < 1. Therefore, larger values of these two param-
eters have stronger impacts on the conductivity change in nanofl-
uids, a phenomenon also found for 2D nanofluids [24].
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3.3. Nanofluids with Hashin–Shtrikman conductivity bounds

For macroscopically homogeneous and isotropic two-phase sys-
tems such as nanofluids considered in the present work, ke=kf is
bounded by the Hashin–Shtrikman bounds [25]:

ke=kf ¼ kp=kf 1� 3ð1�uÞðkp=kf � 1Þ
3kp=kf �uðkp=kf � 1Þ

� �
ð18Þ

which gives the upper bound when kp=kf > 1 and the lower bound
when kp=kf < 1 .

For slab-cross nanofluids in Fig. 1(e), the particles will form a
connected slab-cross network in nanofluids when as ¼ lu (inset in
Fig. 6). Similarly, the column-cross nanoparticles in Fig. 1(f) will
also form a connected network when lc ¼ lu (inset in Fig. 6). While
the particles are connected to form a network in both cases, there
is a significant difference between the two. In the former, the base
fluid is separated by the particle network such that it can be re-
garded as a dispersed phase. In the latter, the connected particle
network does not separate the base fluid into different parts such
that the base fluid is still connected and cannot be reviewed as a
dispersed phase.

Fig. 6 shows the variations of the effective thermal conductivity
ratio ke=kf for three types of nanofluids containing slab-cross net-
work, column-cross network and spheres, respectively. For the
same kp=kf and u, the effective thermal conductivity for the nano-
fluids with the connected slab-cross network is much higher than
the other two nanofluids when kp=kf > 1, and much lower when
kp=kf < 1. In particular, their conductivity can practically reach
the Hashin–Shtrikman bounds.

When kp=kf is larger than 1, the effective thermal conductivity
of the nanofluids containing column-cross network is much higher
than that of the sphere nanofluids, but there is still some distance
from the Hashin–Shtrikman bound. When kp=kf is smaller than 1,
however, the effective thermal conductivity of the column-cross
nanofluids is only slightly smaller than that of the sphere nanofl-
uids. Unlike the sphere nanofluids, nanofluids containing slab-
cross or column-cross networks do not show any level-off of
kp=kf up to kp=kf ¼ 100. Therefore, increasing kp=kf value beyond
a certain value is not as beneficial for nanofluids with well-
dispersed nanoparticles such as the sphere nanofluids as that for
nanofluids with connected particle networks in the sense of
upgrading ke=kf .

Fig. 7 illustrates the variation of the non-dimensional heat
transfer coefficient havl2

u=kf for the three nanofluids as a function
of kp=kf and u. The coefficient havl2

u=kf for nanofluids with the
slab-cross network is much higher than those of the other two.
Therefore, the enhanced particle-fluid interfacial heat transfer is
the mechanism behind Hashin–Shtrikman upper conductivity
bounds.

For the nanofluids containing column-cross network and sphere
nanoparticles, the coefficient havl2

u=kf increases from a lower limit
to a higher limit with particle-fluid conductivity ratio kp=kf

increasing from 0 to infinity. Both limits depend on the particle
shape and volume fraction. For the nanofluids containing slab-
cross network, however, the simulation results do not show the
two limits of havl2

u=kf at very small and very large values of kp=kf .
Therefore, changing the particle-fluid interfacial heat transfer via
varying kp=kf is more effective for nanofluids with the base fluid
separated by the particles into the dispersed phase.

Furthermore, different particle morphologies result in different
dependencies of havl2

u=kf on the particle volume fraction u. For par-
ticle morphologies with relatively small Rg and IA, the coefficient
havl2

u=kf increases with particle volume fraction over the whole
range of kp=kf [also see Fig. 2(e)]. For the column-cross network
nanofluids, the coefficient havl2

u=kf is almost the same at
u ¼ 0:05; 0:03 and 0.01 when kp/kf < 0.05, and increases with u
when kp=kf > 0:05. For the slab-cross network nanofluids,
havl2

u=kf decreases with u when kp=kf < 2, and increases with u
when kp=kf > 2. For nanofluids containing slab-cross network,
the variation trend of havl2

u=kf is similar with that for the 2D nano-
fluids containing connected cross networks (Fig. 7); the havl2

u=kf va-
lue is however about 50% higher than its two-dimensional
counterparts [24].

The advance of volumetric interfacial heat transfer coefficient
havl2

u=kf for nanofluids containing slab-cross network (SCN) com-
pared with those containing column-cross network (CCN) could
be due to either larger volumetric interfacial area av or enhanced
volumetric heat transfer coefficient h. By using the expressions of
non-dimensional interfacial area (IA) in Table 1, the av-ratio be-
tween SCN nanofluids and CCN nanofluids are computed to be
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3.83, 4.99 and 8.69 at u ¼ 0:05;0:03 and 0.01, respectively. Accord-
ingly, the h-ratio can be calculated by

hSCN

hCCN
¼ ðhavÞSCN=ðhavÞCCN

ðavÞSCN=ðavÞCCN
ð19Þ

Fig. 8 shows both ðhavÞSCN=ðhavÞCCN and hSCN=hCCN as a function of
kp=kf and u. For all three u values, the ðhavÞSCN=ðhavÞCCN is always
larger than one, decrease monotonously as kp=kf increases, and
reach its asymptotic limit around kp=kf ¼ 1. hSCN=hCCN also decreases
monotonously as kp=kf increases and reach its asymptotic limit
around kp=kf ¼ 1. It is however larger than one only when kp=kf is
smaller than 1, 0.4 and 0.1 for u ¼ 0:05;0:03 and 0.01, respectively.
Therefore, the higher havl2

u=kf value for SCN nanofluids comes from
both enhanced h and av in the range of lower kp=kf -value and from
the larger av only in the range of higher kp=kf value.
LA r
LA

LA
r

0.0 0.5 1.0 1.5 2.0 2.5 3.0
2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

(k
e/

k f 
- 1

)/ ϕ

ϕ = 0.05
ϕ = 0.03
ϕ = 0.01

(a)

(b)

Sphere Particles

0 1 2 3 4 5 6 7 8
1.7

1.8

1.9

2.0

2.1

2.2
ϕ = 0.05
ϕ = 0.03
ϕ = 0.01

(k
e/

k f 
- 1

)/ ϕ

LA/r

LA/r

Circular Particles

Fig. 9. Non-dimensional thermal conductivity ðke=kf � 1Þ=u as a function of the
relative distance LA=r, particle volume fraction u at kp=kf ¼ 20 (a), and a
comparison with the two-dimensional nanofluids (b).
3.4. Effect of particles’ aggregation

The effects of particle aggregation on the nanofluid effective
thermal conductivity are examined by changing the relative sepa-
ration distance between eight sphere particles defined by LA=r as
shown by the inset in Fig. 9(a). Here r and LA are the particle radius
and the distance between each particle and the center plane of unit
cell respectively. When LA=r reaches its maximum value, the nano-
fluids consist of uniformly-distributed sphere particles in Fig. 1(a).
When LA=r ¼ 0, the eight particles touch with each other to form an
aggregate; such aggregates uniformly disperse in the base fluids.
Fig. 9(a) shows the variation of the non-dimensional thermal con-
ductivity ðke=kf � 1Þ=u as a function of the relative distance LA=r
and particle volume fraction u at kp=kf ¼ 20. The ðke=kf � 1Þ=u de-
creases sharply with LA=r when LA=r is less than 0.2, but is nearly
independent of LA=r when LA=r is larger than 0.2. Therefore,
upgrading the nanofluid thermal conductivity via particle aggrega-
tion would be more effective and observable when the distance be-
tween particles is less than one fifth of the particle dimension. For
the corresponding 2D nanofluids consisting of circular particles
[24], the value of ðke=kf � 1Þ=u decreases sharply with LA=r when
LA=r < 1, but is nearly independent of LA=r when LA=r > 1, indicat-
ing that the effect of particle aggregation on the effective thermal
conductivity is observable when the distance between particles is
less than the particle dimension [Fig. 9(b)].

3.5. Phase lags of heat flux (sq) and temperature gradient (sT)

For the nanofluids considered in the present work, kfp=kf < 0:05
[such as those shown in Figs. 2(d) and 3]. This indicates that the ef-
fect of cross-coupling between the heat conduction in the fluid and
particle phases is weak. The heat conduction should thus be diffu-
sion-dominant. To formally prove this, consider phase lags sT and
sq. Both are hav-dependent [Eqs. (2) and (3)]. The value of hav

can be determined from the numerical results of havl2
u=kf for given

lu which is related with the particle size through particle volume
fraction u. Taking the spherical nanoparticle with a diameter of
dp as an example, the following relation holds:

1
6 pd3

p

l3
u

¼ u ð20Þ

Substituting Eqs. (8) and (20) into Eqs. (2) and (3) leads to:

sq ¼
1

hav l2u
kf
� kf

ð p
6uÞ

2=3d2
p

1
uðqcpÞp

þ 1
ð1�uÞðqcpÞf

h i ð21Þ

sT ¼
ð1�uÞðqcpÞf kpp þuðqcpÞpkff

hav l2u
kf
� kf

ð p
6uÞ

2=3d2
p
� ke

ð22Þ

Therefore, both sT and sq are proportional to d2
p.

Consider the ratio between the two phase lags sT/sq:

sT

sq
¼ 1þ

c2
f kpp þ c2

pkff � 2cfcpkfp

cfcpke
: ð23Þ

It could be larger, equal or smaller than 1 depending on the sign of
c2

f kpp þ c2
pkff � 2cfcpkfp. By the condition for the existence of ther-

mal waves that requires sT/sq < 1 [21,32], thermal waves will occur
when

c2
f kpp þ c2

pkff � 2cfcpkfp ¼ cf

ffiffiffiffiffiffiffi
kpp

q
� cp

ffiffiffiffiffiffi
kff

p� �2

þ 2cfcp

ffiffiffiffiffiffiffiffiffiffiffiffi
kff kpp

q
� kfp

� �
< 0: ð24Þ
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A necessary (but not sufficient) condition for the existence of
thermal waves is kfp >

ffiffiffiffiffiffiffiffiffiffiffiffi
kff kpp

p
which requires, by applying Eqs.

(4)–(6),Z
Afp

nfpbI dA 6
uðu� 1Þ

kp=kf �uðkp=kf � 1Þ ð25Þ

Note that all the numerical results of ke=kf are bounded by Max-
well–Garnett formula [Eq. (13)] and Hashin–Shtrikman bound [Eq.
(18)] for the nanofluids considered in the present work. Therefore,

1þ 3uðkp=kf � 1Þ
kp=kf þ 2�uðkp=kf � 1Þ 6

ke

kf

6
kp

kf
1� 3ð1�uÞðkp=kf � 1Þ

3kp=kf �uðkp=kf � 1Þ

� �
;

at
kp

kf
> 1 ð26aÞ

kp

kf
1� 3ð1�uÞðkp=kf � 1Þ

3kp=kf �uðkp=kf � 1Þ

� �
6

ke

kf

6 1þ 3uðkp=kf � 1Þ
kp=kf þ 2�uðkp=kf � 1Þ ;

at
kp

kf
< 1 ð26bÞ

By applying Eq. (1) and Eqs. (4)–(6), Eqs. (26a) and (26b) yield:

uðu� 1Þ
kp=kf þ 2�uðkp=kf � 1Þ 6

Z
Afp

nfpbI dA

6
uðu� 1Þ

3kp=kf �uðkp=kf � 1Þ ;

at
kp

kf
> 1; ð27aÞ

uðu� 1Þ
3kp=kf �uðkp=kf � 1Þ 6

Z
Afp

nfpbI dA

6
uðu� 1Þ

kp=kf þ 2�uðkp=kf � 1Þ ;

at
kp

kf
< 1: ð27bÞ

The right-hand-side of inequality (25), uðu�1Þ
kp=kf�uðkp=kf�1Þ, is always neg-

ative and smaller than either uðu�1Þ
kp=kfþ2�uðkp=kf�1Þ or uðu�1Þ

3kp=kf�uðkp=kf�1Þ. There-

fore, the inequality (25) cannot be fulfilled. The heat conduction in
nanofluids with only the cross-coupling between the heat conduc-
tion in the fluid and particle phases being considered is thus diffu-
sion-dominant. It is also interesting to note that the ratio sT=sq is
independent of hav, and thus determined only by material proper-
ties, volume fractions and geometrical morphologies of the two
phases, without influenced by the particle size.

Table 2 lists the phase lags of heat flux ðsqÞ and temperature
gradient ðsTÞ and their ratio ðsT=sqÞ for CuO (copper oxide)-in-
water nanofluid, Al2O3 (alumina)-in-water nanofluid and olive-
oil-in-water emulsion. For the first two types of nanofluids, the
Table 2
Phase lags of heat flux ðsqÞ and temperature gradient ðsTÞ, and the ratio sT=sq, for nanofluid
thickness of 10 nm.

Nanofluids u ¼ 0:05 u ¼

sq � 109(s) sT � 109(s) sT=sq sq

CuO–H2O (sphere) 0.0203 0.0616 3.03 0.0
CuO–H2O (slab-cross network) 2.12 28.7 13.5 3.7
Al2O3–H2O (sphere) 0.0193 0.0614 3.18 0.0
Al2O3–H2O (slab-cross network) 1.97 35.6 18.1 3.4
Olive oil–H2O (sphere) 0.0246 0.0411 1.67 0.0
nanoparticles are assumed to be spheres with a diameter of
10 nm and connected slab-cross networks with slab thickness
being 10 nm, respectively. For olive-oil-in-water emulsion, the oil
phase is assumed to be spherical droplets with a diameter of
10 nm suspending in the water phase. The data in Table 2 show
that sq and sT are in the order of 10�11 s for nanofluids with sphere
nanoparticles or nanodroplets and 10�9–10�7 s for nanofluids with
connected slab-cross networks. Therefore, particle aggregation
tends to increase the values of sq and sT. Moreover, sT=sq is always
larger than 1 so that heat conduction in these five nanofluids is dif-
fusion-dominant without thermal waves.

3.6. Predictive models of effective thermal conductivity

Since heat conduction is diffusion-dominant for the nanofluids
considered in the present work, we can obtain some predictive
models of their effective thermal conductivity by fitting our
numerical results based on some classical diffusion theory in
two-phase systems such as the one in [33]:

ke

kf
¼ kp=kf þ X þ Xuðkp=kf � 1Þ

kp=kf þ X �uðkp=kf � 1Þ ð28Þ

and the classical mixture rule [34]:

ke

kf
¼ 1þu ðkp=kf Þn � 1

� 	
 �1=n ð29Þ

Here X and n are the two parameters that depend on the particle
shape and the conductivity ratio kp=kf and are listed in Table 3 for
nanofluids containing spheres, cubes, hollow spheres ðro ¼ 2riÞ, hol-
low cubes ðao ¼ 2aiÞ, column-cross networks and slab-cross net-
works. By using X and n in Table 3, the relative error for the
effective thermal conductivity is less than 2% for Eq. (28) and 5%
for Eq. (29). Readers are referred to [35] for a systematic review
of models available for predicting the effective thermal conductivity
of porous media.

Note that X equals to 2 for sphere suspensions (regardless of
kp=kf value) and reduces to 2 when kp=kf ¼ 1 (regardless of particle
shape). This agrees well with [33] and proposes the following form
of X:

X ¼ kp=kf þ a1

a2 � kp=kf þ ð1þa1
2 � a2Þ

ð30Þ

Here a1 and a2 are two coefficients that depend only on the parti-
cles’ morphology. Obviously, a1 ¼ 0 and a2 ¼ 1=2 for sphere nano-
fluid; a1 ¼ a2 ¼ 0 for SCN nanofluid. The existence of two
independent shape coefficients is consistent with our discussion
in Section 3.2 that two parameters are required to characterize
the effects of particles’ morphology.

In a real nanofluid the network will normally not span the
whole fluid since the particles will be misoriented and randomly
dispersed, especially for near-spherical particles (low Rg and IA).
This partially explains the fact that the conductivity enhancement
in most conventional nanofluids is much lower than the H–S upper
s containing sphere nanoparticles with a diameter of 10 nm or connected slabs with a

0:03 u ¼ 0:01

� 109(s) sT � 109(s) sT=sq sq � 109(s) sT � 109(s) sT=sq

239 0.0754 3.15 0.0309 0.101 3.27
3 63.9 17.1 12.5 290 23.2
229 0.0755 3.30 0.0295 0.101 3.43
3 85.9 25.0 11.4 462 40.5
265 0.0443 1.67 0.0300 0.0499 1.66



Table 3
Parameters X and n in Eqs. (28) and (29) from the fitting of numerical results.

Particle shape X n

Sphere 2 �0:31þ 0:98
1þexp

lnðkp =kf Þ
1:48 �0:64

� 

Cube kp=kfþ0:76

0:39kp=kfþ0:49
�0:31þ 0:92

1þexp
lnðkp =kf Þ

1:89 �0:85
� 


Hollow sphere kp=kfþ0:36
0:41kp=kfþ0:26

�0:30þ 0:86
1þexp

lnðkp =kf Þ
1:66 �0:98

� 

Hollow cube kp=kfþ0:46

0:32kp=kfþ0:41
�0:36þ 0:85

1þexp
lnðkp =kf Þ

2:07 �1:4
� 


Column-cross network kp=kf þ1:6

0:015kp=kfþ1:285
0:60� 0:20

1þexp
lnðkp =kf Þ

0:20 þ3:0
� 


Slab-cross network 2kp=kf 0:90� 1:64
1þexp

lnðkp =kf Þ
1:35 þ0:67
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Fig. 10. Comparison between the predictive models for column-cross network
nanofluid and for misoriented spheroid suspensions in [33].
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bound that requires both the network spanning over the whole
fluid and the base fluid being well dispersed by the network.

The effective conductivity of misoriented spheroid suspension
can be predicted by [33]:

ke

kf
¼ 1þ ub

1�u
kp=kf � ke=kf

kp=kf � 1
ð31Þ

where

b ¼ 1
3

2
1þ ðkp=kf � 1ÞM=2

þ 1
1þ ðkp=kf � 1Þð1�MÞ

� �
kp

kf
� 1

� �

ð32Þ
M ¼ 1

sin2 /
� 1

2
cos2 /

sin3 /
log

1þ sin /
1� sin /

� �
;

where cos / ¼ b=a < 1: ð33Þ

Here b/a is the spheroidal aspect ratio. With b=a ¼ ac=lu [Fig. 1(f)
and (f0)], Fig. 10 compares the prediction from Eq. (31) with those
from Eqs. (28) and (29) for CCN nanofluids (Table 3) that require
the network spanning over the whole fluid only, showing a very
good agreement. Therefore, our predictive models for CCN nanofl-
uids are also capable of predicting the effective thermal conductiv-
ity for nanofluids suspended with misoriented spheroids.
4. Concluding remarks

Macroscopic heat-conduction behavior in nanofluids is
characterized by their effective thermal conductivity and phase
lags of heat flux and temperature gradient. The recent first-
principle model links these three macroscale properties to the
microscale structure of nanofluids by the closure problems. For
the details of this structure–property correlation and thus a better
understanding of heat conduction in nanofluids, we resolve these
closure problems numerically for six typical types of nanofluids
containing sphere, cube, hollow sphere, hollow cube, slab-cross
and column-cross nanoparticles, respectively.

Specially, we examine numerically the effects of particle-fluid
thermal conductivity ratio, particle volume fraction, and particle
morphology on the effective thermal conductivity and phase lags
of heat flux and temperature gradient for the six types of nanofl-
uids. The results reveal the particle’s radius of gyration and the
non-dimensional particle-fluid interfacial area as the two charac-
teristic parameters for the effect of particles’ geometrical struc-
tures on the effective thermal conductivity. The nanoparticles
with larger values of these two parameters can vary fluid conduc-
tivity significantly. The higher-conductivity nanofluids are always
with a strong particle-fluid interfacial heat transfer. Due to the sig-
nificant enhancement of this interfacial transport process, the
effective thermal conductivity can practically reach the Hashin–
Shtrikman bounds when particles connect to form a network and
separate the base fluid into a dispersed phase. The particle aggre-
gation will also benefit the upgrade of the effective thermal con-
ductivity when the particles are very close to each other.

Both the phase lags of heat flux and temperature gradient are
scaled with the square of particle dimension. Their values are in
the range from 10�11 s to 10�7 s for the nanofluids considered in
the present work. Since the phase lag of heat flux is smaller than
that of temperature gradient, the heat conduction in the nanofluids
examined in the present work is diffusion-dominant. Their effec-
tive thermal conductivity can be predicted adequately by the pre-
dicting models developed in the present work based on the
classical diffusion theory for two-phase systems. The weak effect
of cross-coupling between the heat conduction in the fluid and
particle phases found in the present work does not exclude the
possibility of significance of the other types of cross couplings
not examined here.
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