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We develop a general bioheat transport model at macroscale for biological tissues with the required clo-
sure provided. The model shows that both blood and tissue macroscale temperatures satisfy the dual-
phase-lagging (DPL) energy equations. Due to the coupled conduction between the blood and the tissue,
thermal waves and possibly resonance may appear in bioheat transport. The blood–tissue interaction
yields a very rich effect of the interfacial convective heat transfer, the blood velocity, the perfusion and
the metabolic reaction on blood and tissue macroscale temperature fields. Examples include: (i) the
spreading of tissue metabolic effect into the blood DPL bioheat equation, (ii) the appearance of the con-
vection term in the tissue DPL bioheat equation due to the blood velocity, and (iii) the appearance of
sophisticated heat source terms in energy equations for blood and tissue temperatures.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Heat transport in biological tissues is enriched by heat conduc-
tion in the tissue and the vascular system, blood–tissue convection,
blood perfusion, and also metabolic heat generation in tissues. Its
accurate description is critical not only for fundamental
understanding of biological processes/functions such as the human
thermoregulation [1], but also for many medical and biological
treatments such as hyperthermia and hypothermia [2], laser
surgery [3], infrared irradiation [4], hypothermic preservation
and cryopreservation [5].

A microscopic study of heat transport in biological tissues is
complicated because of the complicity in microscale anatomical
structure of biological media. Therefore the bioheat transport is
normally examined at macroscale, a phenomenological scale that
is much larger than the microscale of cells and voilds and much
smaller than the system length scale [6]. Macroscale bioheat mod-
els have been developed either by the mixture theory or by the
porous-media theory [6]. The former views blood and tissues as
a mixture of continuum deformable media and develops the mac-
roscale point equations via scaling down the global balance equa-
tions. In this approach, neither microscale presentation of the
system nor microscale quantities is introduced. Phase properties
are defined at the macroscale. The global balance equations are
formed in terms of macroscale properties and with additional
terms accounting for the interaction between blood and tissue. Re-
quired constitutive equations for the heat flux vector are supplied
ll rights reserved.
by the Fourier law [7], the Cattaneo–Vernotte (CV) relation [8] or
the dual-phase-lagging (DPL) relation [8,9]. The thermal models
developed in this approach include the classical Pennes model
[10], the Wulff model [11], the Klinger model [12], Chen and
Holmes model [13], the thermal-wave bioheat model [14] and
the DPL bioheat model [3,15].

The porous-media theory considers biological tissue as a
blood-saturated porous matrix including cells and interstices and
develops the macroscale point equations by scaling up the micro-
scale model. In this approach, both conservation and constitutive
equations are introduced at the microscale. The resulting micro-
scale field equations are then averaged over a representative
elementary volume (REV) to obtain the macroscale field equations.
In the process of averaging, the multiscale theorems are used to
convert integrals of gradient, divergence, curl, and partial time
derivatives of a function into some combination of gradient, diver-
gence, curl, and partial time derivatives of integrals of the function
and integrals over the boundary of the REV [16]. The closure model
must be provided for the unclosed terms in macroscale field equa-
tions that represent the microscale effect in order to form a closed
system. A rigorous closure is not available at present [6]. Some
approximate models developed by this approach include those in
[5,17,18].

Simplicity is the main advantage of the mixture-theory ap-
proach. However, it offers no connection between microscale and
macroscale properties and is not capable to accurately describe
the rich blood–tissue interaction [6]. The porous-media approach
successfully overcomes these drawbacks, thereby offering an
effective way for developing accurate macroscale thermal models
for biological tissues. By applying the porous-media approach,
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Nomenclature

av specific heat transfer area
Abt area of the blood–tissue interface in the representative

elementary volume (REV)
c specific heat
h blood–tissue interfacial convective heat transfer coeffi-

cient
k thermal conductivity
ke effective thermal conductivity
nbt outward-directed surface normal vector from b-phase

to t-phase
v macroscale (intrinsic average) velocity
~v spatial deviation velocity
Vb blood volume in the REV

VREV volume of the REV
T macroscale (intrinsic average) temperature
a effective diffusivity
e volume fraction
U thermal source
q density
sq phase lag of the heat flux
sT phase lag of the temperature gradient
x blood perfusion rate

Superscripts
b blood phase
t tissue phase
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we develop a relatively rigorous macroscale bioheat model that
includes the effect of blood–tissue coupled conduction and is with
blood or tissue temperature as the sole unknown temperature. We
also examine the general features of bioheat transport with the
model developed.

2. Macroscale nonequilibrium heat transport model

We describe the two phases in blood-infiltrated biological tis-
sues as b- and t-phases, denoting the vascular system (blood
phase) and the surrounding tissue (tissue phase), respectively.
Assume that blood is incompressible and Newtonian. A good
discussion is available in [19] regarding the validation region of
this assumption. Take both the blood–tissue interfacial convective
heat transfer and the blood perfusion into account. Following the
same procedure of developing the two energy equation model for
transport in porous media [20,21], a volume average of microscale
conservation equations over a representative elementary volume
(REV; Fig. 1) yields macroscale energy equations for b- and
t-phases,

ðqceÞb @Tb

@t
þ vb � rTb

 !
� ubb � rTb � ubt � rTt

¼ r � ðKbb � rTb þ Kbt � rTtÞ � GbðTb � TtÞ; ð1Þ

ðqceÞt @Tt

@t
� utb � rTb � utt � rTt ¼ r � ðKtb � rTb þ Ktt � rTtÞ

þ GtðTb � TtÞ þ etUt: ð2Þ
0r
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L

Fig. 1. Blood-saturated porous media and re
Here superscripts b and t refer to the blood and tissue phases,
respectively. v and T are the macroscale (intrinsic average) velocity
and temperature, respectively. q, c and e are the density, specific
heat and volume fraction, respectively. U is the thermal source
which may come from the heat generation by metabolic reaction
or the external heat supply like the one used in hyperthermia ther-
apy. G is a blood-tissue coupling factor which represents the com-
bined effect of both the blood-tissue interfacial convective heat
transfer and the blood perfusion. The thermal dispersion tensors
Kbb and Kbt are

Kbb ¼ ðekÞbIþ kb

VREV

Z
Abt

nbtb
bb dA� ðqcÞbh~vbbbbi; ð3Þ

Kbt ¼ kb

VREV

Z
Abt

nbtb
bt dA� ðqcÞbh~vbbbti: ð4Þ

The thermal conductivity tensors Ktb and Ktt are

Ktb ¼ kt

VREV

Z
Abt

ntbbtb dA; ð5Þ

Ktt ¼ ðekÞtIþ kt

VREV

Z
Abt

ntbbtt dA: ð6Þ

The four velocity-like coefficients are given by

ubb ¼ 1
VREV

Z
Abt

nbt � kbrbbb dA� kb

VREV

Z
Abt

nbtsb dA

þ ðqcÞbh~vbsbi � ðqcÞb 1
VREV

Z
Abt

nbt � vbbbb dA; ð7Þ
r

blood

tissue

ntb

r0

REV
V REV

d 

lb
lt

R0

t

b

presentative elementary volume (REV).



724 J. Fan, L. Wang / International Journal of Heat and Mass Transfer 54 (2011) 722–726
ubt ¼ 1
VREV

Z
Abt

nbt � kbrbbt dAþ kb

VREV

Z
Abt

nbtsb dA

� ðqcÞbh~vbsbi � ðqcÞb 1
VREV

Z
Abt

nbt � vbbbt dA; ð8Þ

utb ¼ 1
VREV

Z
Abt

ntb � ktrbtb dA� kt

VREV

Z
Abt

ntbst dA ð9Þ

utt ¼ 1
VREV

Z
Abt

ntb � ktrbtt dAþ kt

VREV

Z
Abt

ntbst dA ð10Þ

The blood–tissue coupling factor, the lumped convection-perfusion
parameter, is

Gb ¼ 1
VREV

Z
Abt

nbt � kbrsb dA� ðqcÞb 1
VREV

Z
Abt

nbt � vbsb dA: ð11Þ

Gt ¼ 1
VREV

Z
Abt

nbt � ktrstdA ð12Þ

In Eqs. (3)–(12), k is the thermal conductivity. VREV and Vb are the
volume of REV and the blood volume in the REV, respectively. nbt

is the outward-directed surface normal vector from the b-phase
toward the t-phase, and nbt = �ntb (Fig. 1). Abt is the area of the
blood–tissue interface in the REV. ~v is the spatial deviation veloc-
ity, the difference between the microscale velocity and the mac-
roscale (intrinsic average) velocity. h i denotes the superfacial
average. bbb, bbt, btb, btt, sb and st are the closure variables or
the mapping variables that link the microscale and macroscale
and are governed by the following three closure problems with
r and ‘i(i = 1,2,3) as the position vector and the lattice vector,
respectively:

Problem I:

ðqcÞb ~vb þ ðqcÞbvb � rbbb ¼ kbr2bbb � 1
eb

cbb; in the b-phase; ð13Þ

B:C:1 bbb ¼ btb
; at Abt; ð14Þ

B:C:2 nbt � kbrbbb ¼ nbt � ktrbtb � nbtk
b
; at Abt ; ð15Þ

0 ¼ ktr2btb þ 1
et ctb; in the t-phase; ð16Þ

Average : hbbbib ¼ 0; hbtbit ¼ 0; ð17Þ

Periodicity : bbbðrþ ‘iÞ ¼ bbbðrÞ; btbðrþ ‘iÞ ¼ btbðrÞ;

i ¼ 1;2;3; ð18Þ

where

cbb ¼ 1
VREV

Z
Abt

nbt � kbrbbb dA� ðqcÞb 1
VREV

Z
Abt

nbt � vbbbb dA;

ctb ¼ 1
VREV

Z
Abt

nbt � ktrbtb dA:

Problem II:

ðqcÞbvb � rbbt ¼ kbr2bbt � 1
eb

cbt; in the b-phase; ð19Þ

B:C:1 bbt ¼ btt
; at Abt; ð20Þ

B:C:2 nbt � kbrbbt ¼ nbt � ktrbtt þ nbtk
t
; at Abt; ð21Þ

0 ¼ ktr2btt þ 1
et ctt; in the t-phase; ð22Þ

Average : hbbtib ¼ 0; hbttit ¼ 0; ð23Þ
Periodicity : bbtðrþ ‘iÞ ¼ bbtðrÞ; bttðrþ ‘iÞ ¼ bttðrÞ;

i ¼ 1;2;3; ð24Þ
where

cbt ¼ 1
VREV

Z
Abt

nbt � kbrbbt dA� ðqcÞb 1
VREV

Z
Abt

nbt � vbbbt dA;

ctt ¼ 1
VREV

Z
Abt

nbt � ktrbtt dA:

Problem III:

ðqcÞbvb � rsb ¼ kbr2sb � 1
eb

Gb; in the b-phase; ð25Þ

B:C:1 sb ¼ st þ 1; at Abt; ð26Þ

B:C:2 nbt � kbrsb ¼ nbt � ktrstnbt � rst � ðqcxÞb

av
; at Abt; ð27Þ

0 ¼ ktr2st þ 1
et Gt; in the t-phase; ð28Þ

Average : hsbib ¼ 0; hstit ¼ 0; ð29Þ

Periodicity : sbðrþ ‘iÞ ¼ sbðrÞ; stðrþ ‘iÞ ¼ stðrÞ;

i ¼ 1;2;3; ð30Þ

where Gb and Gt are given by Eqs. (11) and (12).
x is the blood perfusion rate. av is the specific heat transfer

area. h ib and h it denote the intrinsic average over blood and tissue
volumes, respectively. The three closure problems are obtained
based on the unit-cell approach [20,21]. The approach imposes
the periodicity condition because the closure problem is normally
solved only in some representative region that can be treated as a
unit cell in a spatially periodic model. The three closure problems
are thus valid for biological tissues that can be approximated by
this periodic assumption. Otherwise, the lattice vector
‘i(i = 1,2,3) must cover whole biological tissues of interest so that
the whole system is taken as the unit cell.

The model in Eqs. (1)–(30) is more general than those in
[5,17,18]. It includes the effect of both blood–tissue coupled
conduction terms [Kbt�rTt in Eq. (1) and Ktb�rTb in Eq. (2)] and
non-traditional convective transport terms [(�ubb�rTb � ubt�rTt)
in Eq. (1) and (�utb�rTb � utt�rTt) in Eq. (2)]. It also provides the
rigorous closures which offer the models for microscale effects
on macroscale [Eqs. (3)–(30)]. While the three closure problems
appear sophisticated, they can be effectively resolved by standard
numerical schemes. For the details of resolving such closure
problems, the readers are referred to, for example, [22,23] that
solve a similar closure problem for heat transport in nanofluids.

3. Macroscale model for blood and tissue temperatures

Rewrite Eqs. (1) and (2) in their operator form:

A B
C D

� �
Tb

Tt

" #
¼

0
etUt

� �
; ð31Þ

where

A ¼ cb @

@t
þ vb � r

� �
� ubb � r �r � ðKbb � rÞ þ Gb; ð32Þ

B ¼ �ubt � r �r � ðKbt � rÞ � Gb; ð33Þ

C ¼ �utb � r �r � ðKtb � rÞ � Gt; ð34Þ

D ¼ ct @

@t
� utt � r �r � ðKtt � rÞ þ Gt; ð35Þ

cb ¼ ðqceÞb; ct ¼ ðqceÞt; ð36Þ
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We then obtain an uncoupled form by evaluating the determinant
of the operator:

@Ti

@t
þ cbct

Gbct þGtcb

@2Ti

@t2 þ
1

Gbct þ Gtcb
½Gtcbvb �Gbðutt þ utbÞ

�Gtðubb þ ubtÞ� � rTi ¼ 1

Gbct þGtcb
fGt ½r � ðKbb � rÞ

þr � ðKbt � rÞ� þGb½r � ðKtb � rÞ þr � ðKtt � rÞ�g

þ 1

Gbct þGtcb
cb @

@t
½r � ðKtt � rÞ� þ ct @

@t
½r � ðKbb � rÞ�

� �
Ti

þ 1

Gbct þGtcb
½r � ðKbt � rÞ�½r � ðKtb � rÞ� � ½r � ðKbb � rÞ�½r � ðKtt � rÞ�
n

þ cb @

@t
ðutt � rÞ þ ct @

@t
ðubb � rÞ

� �
� cbct @

@t
ðvb � rÞ

þ cbðvb � rÞ½r � ðKtt � rÞ� þ cbðvb � rÞðutt � rÞ � ½ðubb � rÞðutt � rÞ
� ðubt � rÞðutb � rÞ� � fðubb � rÞ½r � ðKtt � rÞ� þ ðutt � rÞ½r � ðKbb � rÞ�

� ðubt � rÞ½r � ðKtb � rÞ� � ðutb � rÞ½r � ðKbt � rÞ�g
o

Ti þ 1

Gbct þ Gtcb
HietUt ;

ð37Þ

where the index i can take b or t. Hi takes the form:

Hb ¼ ubt � r þr � ðKbt � rÞ þ Gb; ð38Þ

Ht ¼ cb @

@t
þ ðvb � rÞ

� �
� ubb � r �r � ðKbb � rÞ þ Gb: ð39Þ

When the system is isotropic and the physical properties of the two
phases are constant, it reduces to

@Ti

@t
þsq

@2Ti

@t2 þ
1

GbctþGtcb
½Gtcbvb�GbðuttþutbÞ�GtðubbþubtÞ� �rTi

¼aDTiþasT
@

@t
ðDTiÞþ a

ke
Fðr;tÞþsq

@Fðr;tÞ
@t

� �i

; ð40Þ

where

sq ¼
cbct

Gbct þ Gtcb
; ð41Þ

sT ¼
cbktt þ ctkbb

ke
; ð42Þ

a ¼ ke

qc
¼ ke

Gbct þ Gtcb
; ð43Þ

ke ¼ Gtðkbb þ kbtÞ þ Gbðktb þ kttÞ; ð44Þ

Fðr; tÞþsq
@Fðr; tÞ
@t

� �i

¼ ðkbtktb�kbbkttÞD2þ cb @

@t
utt �r
� 	

þ ct @

@t
ubb �r
� 	� ��

� cbct @

@t
ðvb �rÞþ cbkttDðvb �rÞþ cbðvb �rÞðutt �rÞ

� ½ðubb �rÞðutt �rÞ� ðubt �rÞðutb �rÞ�
� ½kttDðubb �rÞþ kbbDðutt �rÞ�ktbDðubt �rÞ
� kbtDðutb �rÞ�

o
TiþhietUt ; ð45Þ

where

hb ¼ ubt � r þ kbtDþ Gb; ð46Þ

ht ¼ cb @

@t
þ ðvb � rÞ

� �
� ubb � r � kbbDþ Gb: ð47Þ

This is a dual-phase-lagging heat conduction equation with sq and
sT as the phase lags of the heat flux and the temperature gradient,
respectively [8,9,16]. Here, F(r, t) is the volumetric heat source. ke,
qc, and a are the effective thermal conductivity, volumetric heat
capacity and diffusivity, respectively. They depend not only on the
volume fractions and the properties of the two phases but also on
the microstructure in biological tissues. Although the heat conduc-
tion in blood and tissue is assumed to be Fourier-type at the micro-
scale, it is a DPL-type at the macroscale. This feature also occurs in
heat-conduction processes of general two-phase systems, identified
in [24] that considers pure heat conduction without convection and
offers no closures.

The bioheat Eq. (40) differs from those in the literature mainly
on: (1) blood or tissue temperature is as the sole unknown temper-
ature, (2) blood–tissue coupled conduction is included, and (3) all
the parameters are expressed in terms of properties of blood and
tissue and their coupling factor. The readers are referred to [8]
for analytical solutions of DPL equation in various systems that
can be applied for examining detailed features of bioheat transport
in many real problems.

It is interesting to note that the non-traditional convective
terms �ubb�rTb � ubt�rTt and �utb�rTb � utt�rTt in Eqs. (1) and
(2) do lead to the non-traditional convective terms ubb � rTi,
utb � rTi, ubt � rTi and utt � rTi in Eqs. (37) and (40). The velocity-
like terms also appear in the source terms of Eqs. (37) and (40).

Furthermore, the heat source etUt (which may come from the
metabolic reaction in the tissue or external heat supply) and the
convective term vb�rTi appear in both the blood and the tissue en-
ergy equations [Eqs. (37) and (40)]. Therefore, they are with their
macroscale manifestation in both blood and tissue. The blood–tis-
sue interaction generates a very rich way that the blood–tissue
interfacial convective heat transfer, the blood velocity, the blood
perfusion and the thermal source in tissue affect Tb and Tt [Eqs.
(40) and (45)]. It would be very difficult to model these rich inter-
actions by the mixture theory of continuum mechanics.

Consider

sT

sq
¼ 1þ ðc

bÞ2Gtktt þ ðctÞ2Gbkbb � cbctðGtkbt þ GbktbÞ
cbctke

: ð48Þ

It could be larger, equal or smaller than 1 depending on the sign of
(cb)2Gtktt + (ct) 2Gbkbb � cbct(Gtkbt + Gbktb). By the condition for the
existence of thermal waves that requires sT/sq < 1 [8,25], we may
have thermal waves in bioheat transport when

ðcbÞ2GtkttþðctÞ2Gbkbb�cbctðGtkbtþGbktbÞ

¼ cb
ffiffiffiffiffiffiffiffiffiffi
Gtktt

p
�ct

ffiffiffiffiffiffiffiffiffiffiffiffi
Gbkbb

q� �2

þcbct 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GbkbbGtktt

q
�Gtkbt�Gbktb

� �
< 0:

ð49Þ

A necessary (but not sufficient) condition for Eq. (49) is

Gtkbt þ Gbktb
> 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GbkbbGtktt

p
. When the coupling thermal conduc-

tivity term kbt and ktb are excluded so that sT/sq is always larger
than 1, thermal waves would not appear. Moreover, there is a
time-dependent source term F(r, t) in the DPL macroscale bioheat
equation [Eqs. (37) and (40)]. Therefore, the resonance can also
occur.

4. Concluding remarks

In an attempt to accurately describe heat transport in biological
tissues, we have developed a closed macroscale bioheat model that
takes the blood–tissue coupled conduction into account and is
with blood or tissue temperature as the sole unknown tempera-
ture. The result shows: (i) the dual-phase-lagging bioheat trans-
port at macroscale for both blood and tissue phases, and (ii) the
sophisticated effect of the interfacial convective heat transfer, the
blood velocity, the perfusion and the metabolic reaction on macro-
scale temperature fields in blood and tissue.

The dual-phase-lagging heat transport differs from the classical
Fourier heat transport mainly on its existence of thermal waves
and possible resonance. Such waves and resonance comes from
the blood–tissue coupled conduction and will vary features of heat
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transport significantly. Focused future efforts are required to find
the correlation between the microscale physics of biological tissues
and macroscale properties of bioheat transport based on the three
closures and to detail properties of thermal waves and how they
interact with the heat diffusion and the convection based on the
energy equations for blood and tissue macroscale temperatures.
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