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a b s t r a c t

We develop a constructal approach that is capable of finding constructal microstructure of nanofluids for
constructal system performance. The approach converts the inverse problem of optimizing the micro-
structure for the best system performance into a forward one by first specifying a type of microstructures
and then optimizing system performance with respect to the available freedom within the specified type
of microstructures. The approach is applied to constructal design of nanofluids with any branching level
of tree-shaped nanostructures in a circular disc with uniform heat generation. The constructal configura-
tion and constructal system thermal resistance have some elegant universal features for both cases of
given aspect ratio of the periphery sectors and given the total number of slabs in the periphery sectors,
respectively. While our focus is on the constructal design and optimization of nanofluids microstructure,
the methodologies and results are equally valid for other problems such as heat conduction optimization
for cooling a disc-shaped area.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Nanofluids are the fluid suspensions of nanometer-sized struc-
tures (particles, fibers, tubes) [1–3]. Recent experiments on nano-
fluids have shown, for example, twofold increases in thermal
conductivity [2,4,5], strong temperature dependence of thermal
conductivity [3], substantial increases in convective heat transfer
coefficient [3,6], and threefold increases in critical heat flux (CHF)
in boiling heat transfer [1–3,7]. These characteristics make them
very attractive for a large number of industries such as transporta-
tion, electronics, defense, space, nuclear systems cooling and bio-
medicine [1–3].

The very essence of nanofluids research and development is to
enhance system overall performance through manipulating nano-
particles’ structure and distribution in the base fluids. For the
heat-conduction nanofluids, the desire for the system overall per-
formance is normally to minimize system highest temperature or
to minimize system overall thermal resistance. Therefore, interest
should focus not only on improving nanofluid thermal conductivity
but also on designing nanofluid structures for better system overall
performance [8].

By its very nature, the optimization of nanofluid microstruc-
tures for better system performance fits well into the inverse prob-
lem in mathematics and the downscaling problem in multiscale
science [9]. Both are of fundamental importance but daunting
difficulty with no effective method available to resolve them at
present. We thus propose a constructal approach that follows the
ll rights reserved.
constructal theory [10–12] and is capable of finding constructal
microstructure and constructal performance. Here constructal
microstructure and performance are the best microstructure and
performance within a specified type of microstructures. In the
present work, we show this approach by performing a constructal
design for nanofluid heat conduction in a circular disc with the pre-
specified type of microstructures of tree configuration in which
nanoparticles form tree structures in the base fluid as high-con-
ductivity channels for the heat flow (Fig. 1). The tree structure is
chosen because it is mostly found in nature for its small flow resis-
tance [10–12].

The circular disc system is selected both for its fundamental
importance and for its geometrical regularity that renders an ana-
lytical analysis possible. For addressing the fundamental issue in
the cooling of electronics, this system was first studied in [13] by
adopting the ‘growth’ method of constructal design [14]. The con-
structal design in [13] started with the optimization of the elemen-
tal sector (the smallest area sector) for the minimization of the
sector thermal resistance. Such optimized elemental sectors were
used to build the system. The constructal system structure was
then obtained by minimizing the overall system thermal resistance
with respect to the distribution of volume fraction of high-conduc-
tivity material. The resulted constructal overall resistance was
shown to decrease with the dimensionless disc radius defined as
the ratio of the disc radius over the square root of elemental sector
area. As the disc size becomes larger and larger compared with the
elemental sector, a structure with more branching levels would be
recommended. The present work focuses on designing microstruc-
ture of the fixed-sized system for minimizing system overall ther-
mal resistance. Therefore, neither the aspect ratio nor the size of
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Nomenclature

aM1 constant appearing in the constructal system thermal
resistance of M-branching architecture for fixed aspect
ratio of the periphery sectors

aM2 constant appearing in the constructal system thermal
resistance of M-branching architecture for fixed number
of slabs in the periphery sectors

bM1 constant constructal relative radius R0 of M-branching
architecture for fixed aspect ratio of the periphery sec-
tors

bM2 constant constructal relative radius R0 of M-branching
architecture for fixed number of slabs in the periphery
sectors

cM1 constant constructal slab volume fraction ~u1�M;con for
fixed aspect ratio of the periphery sectors

cM2 constant constructal slab volume fraction ~u1�M;con for
fixed number of slabs in the periphery sectors

Di slab width in Level-i sectors (m)eDi;Mth non-dimensional slab width in Level-i sectors of M-
branching architecture, Di=ðDM

QM
j¼iþ1njÞ

Hi half-base-length in Level-i sectors (m)
k Thermal conductivity ratio of nanoparticles and the

base fluid, kp/kf

kf thermal conductivity of the base fluid (W/(m K))
kp thermal conductivity of nanoparticles (W/(m K))
Li slab length in Level-i sectors (m)
ni bifurcation number from one slab in the Level-i sectors
Ni total number of slabs in the Level-i sectors
r radial position (m)
R0 radius of the whole disc (m)

Ri,Mth distance from the confluence point of the slabs in Level-i
sectors to the rim in M-branching architecture,

PM
j¼iLj

(m)
Ri non-dimensional relative radius of Level-i sectors, Ri/

Ri+1

RMth disc overall thermal resistance in M-branching architec-
ture

q000 volumetric heat generation rate (W/m3)
T0 center temperature (K)
Tc temperature at the confluence point in one-branching

architecture (K)
Tc1 temperature at the confluence point of the slabs in Le-

vel-1 sectors (K)
Tc2 temperature at the confluence point of the slabs in Le-

vel-2 sectors (K)
Tm hot-spot temperature (K)
TR temperature at the peripheral tip of slabs in zero-

branching architecture (K)
a0 angle of one central sector
u overall slab volume fraction
ui slab volume fraction in Level-i sectors
ui�M slab volume fraction from Level-i to Level-M
~ui�M Non-dimensional slab volume fraction, ui�M/u(i�1)�M

Subscripts
con constructal
ith Level-i sectors
Mth Level-M sectors
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the elemental sector is fixed in our analysis because the employ-
ment of elemental sectors with a minimized sector resistance does
not necessarily yield a minimization of system overall resistance.
We introduce length ratios of sectors at different positions so that
once the number of branching level is specified the constructal de-
sign provides directly the optimized length of each sector relative
to the disc radius and the optimized distribution of volume frac-
tions. Furthermore, our constructal design is made for configura-
tions with any levels of tree branching.

The present work centers on obtaining the theoretically best
tree structure rather than modeling or resembling the clustering/
agglomerating in the real systems of nanofluids. The obtained con-
structal structure offers the direction (theoretically the best) for
developing high-performance nanofluids. While our focus is on the
constructal design and optimization of nanofluids microstructure,
the methodologies are equally valid for other problems of construc-
T0

q''' 1

Tm

kf kp
pkfk

q''' 1

0T
R0

(a) (b)

Fig. 1. Nanofluid heat conduction in a circular disc of radius R0: (a) zero-branching a
tal design such as surface-to-point heat conduction and constructal
allocation of materials with different properties [10–15].

2. Constructal design

Consider nanofluid heat conduction in a circular disc of radius
R0 and unit thickness, with uniform distribution of volumetric heat
generation rate q000 and one central heat sink (T0) (Fig. 1). Nanopar-
ticles are assumed to be thin slabs and form tree configuration in
the base fluid as high-conductivity channels for the heat flow.
The composition of the nanoparticles and the base fluid is fixed
and specified by the particle volume fraction u over the total nano-
fluid volume:

u ¼ volume of nanoparticle material
total nanofluid volume

: ð1Þ
mT T0

q''' 1

Tm

kf kp

L0

0R R0

0L L

(c)

rchitecture; (b) one-branching architecture; and (c) two-branching architecture.



ig. 2. Elemental sector of (a) zero-branching architecture, (b) one-branching
rchitecture (n1 = 3 for example) and (c) two-branching architecture (n1 = 2, n2 = 3
r example).
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Our goal is to optimize the geometry of the heat-conduction paths
for minimizing the overall thermal resistance, that is, the hot-spot
temperature Tm, which is likely to occur on the rim.

2.1. Zero-branching architecture

The simplest architecture is the one with no slab branching so
that the slabs arranged radially and equidistantly with one end
touching the heat sink and the other touching the rim as shown
in Fig. 1(a) [10]. For the sake of simplicity, the following assump-
tions are made [8,10,13]:

(i) there are many radial slabs (with conductivity of kp) so that
one elemental sector is slender enough to be approximated
by an isosceles triangle of base 2H0 and height R0 [Fig. 2(a)];

(ii) the width D0 of each slab is constant;
(iii) the volume fraction u of the slabs is fixed and small, u� 1;
(iv) the conductivity ratio between slabs and base fluid is fixed

and large, k = kp/kf� 1.

Therefore, the freedom of the zero-branching architecture is the
aspect ratio of the element, H0/R0. By following that in [8,10,13] for
evaluating (Tm � TR) and (TR � T0) under the above assumptions,
we have the overall temperature difference and thermal resistance
of the whole disc:

ðTm � T0Þ0th ¼
q000H2

0

2kf
þ 2q000R2

0

3kpu
; ð2Þ

R0th ¼
ðTm � T0Þ0th

q000pR2
0=kf

¼ ðH0=R0Þ2

2p
þ 2

3pku
: ð3Þ

Clearly, the system overall thermal resistance R0th becomes smaller
and approaches to 2/(3pku) as H0/R0 decreases.

2.2. One-branching architecture

One-branching architecture consists of slabs that stretch radi-
ally to the distance L0 away from the central heat sink, and con-
tinue with n1 branches that reach the rim [Fig. 1(b); 8, 10, 13].
Its elemental sector contains one stem of aspect ratio H0/L0 and
n1 tributaries of aspect ratio H1/L1 shown in Fig. 2(b). The length
L1 is the distance from the hot spot (Tm) to the confluence point
(Tc). The goal is to assemble a number of branched sectors into a
complete disc for a minimum overall thermal resistance.

The system overall temperature difference (Tm � T0) can be cal-
culated by the sum of (Tm � Tc) and (Tc � T0). By applying the result
from zero-branching architecture [Eq. (2)], (Tm � Tc) in the periph-
ery sectors with radius of L1 can be estimated by

Tm � Tc ¼
q000H2

1

2kf
þ 2q000L2

1

3kpu1
: ð4Þ

Here u1 is the slab volume fraction in the periphery sector and
equals to D1/H1 with D1 as the slab width in the periphery sector.

The Tc tip of each slab receives the heat current collected by the
n1 periphery sectors, which equals to the heat generation in the
area between the dashed arc with radius L0 and the outer circum-
ference. Therefore, an energy balance at the tip yields

q000 � 1� pR2
0 � pL2

0

ð2p=a0Þ
¼ 1� kpD0

dT
dr

� �
r¼L0

: ð5Þ

Here a0 is the angle of one central sector,

a0 ¼
2n1H1

R0
: ð6Þ
F
a
fo
r is the radial position measured from the center (r = 0) to the Tc

junction (r = L0). The governing equation for the temperature distri-
bution along the D0 slab is [8,10,13]

�dq ¼ 2
H0

L0
r

� �
q000 � 1dr; ð7Þ

where

q ¼ 1� kpD0
dT
dr
: ð8Þ

After invoking the tip condition, Eq. (5), a successive integration of
Eqs. (7) and (8) leads to the temperature difference (Tc � T0)

Tc � T0 ¼
q000L0

kpD0

2
3

H0L0 þ
n1H1

R0
ðR2

0 � L2
0Þ

� �
: ð9Þ

Applying L0 ffi R0 � L1, Eqs. (4) and (9) give the disc overall temper-
ature difference:

ðTm � T0Þ1th ¼
q000H1L1

kf

1
2

H1

L1
þ 2

3ku1

L1

H1

� �
þ q000L0

kpD0

2
3

H0L0 þ
n1H1

R0
ðR2

0 � L2
0Þ

� �
: ð10Þ
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The disc overall thermal resistance can thus be written as

R1th ¼
ðTm � T0Þ1th

q000pR2
0=kf

¼ 1
R2

0;1th

ðH1=L1Þ2

2p
þ 2

3pku1

( )

þ 1
pku1

1eD0;1th

1� 1
R0;1th

 !
1� 1

3
1� 1

R0;1th

 !2
24 35; ð11Þ

where

R0;1th ¼
R0

L1
; eD0;1th ¼

D0

n1D1
: ð12Þ

The term in the braces {} is the same as the one obtained by replac-
ing H0/R0 and u in R0th with H1/L1 and u1, respectively.

Since the overall particle volume fraction u can be expressed
as

u ¼ ðn1D1L1 þ D0L0Þð2p=a0Þ
pR2

0

¼ n1D1L1 þ D0L0

n1H1R0
; ð13Þ

we have

eD0;1th ¼
ðu=u1ÞR0;1th � 1

R0;1th � 1
; u1 < uR0;1th: ð14Þ

Therefore, the system overall thermal resistance R1th is a function of
H1/L1, u1 and R0;1th. R1th will have a minimum value when

@R1th

@ðH1=L1Þ
¼ 0; ð15Þ

@R1th

@u1
¼ 0; ð16Þ

@R1th

@R0;1th

¼ 0: ð17Þ

However,

@R1th

@ðH1=L1Þ
¼ H1=L1

pR2
0;1th

P 0: ð18Þ

Therefore, R1th is monotonically decreases when (H1/L1) tends to
zero for fixed u1 and R0;1th. To satisfy Eq. (16), we have

@

@u1

a
R2

0;1thu1

þ R0;1th � 1
uR0;1th �u1

1� 1
R0;1th

 !
1� 1

3
1� 1

R0;1th

 !2
24 358<:

9=;
¼ 0;

ð19Þ

where a = 2/3. Its solution yields the constructal u1

~u1;con ¼ u1;con=u ¼
aR0;1th

A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A1

a

r
� 1

 !
; ð20Þ

where

A1 ¼ ðR0;1th � 1Þ 1� 1
R0;1th

 !
R2

0;1th �
1
3

1� 1
R0;1th

 !2
24 35� a: ð21Þ

After using Eqs. (14) and (20), Eq. (11) reduces R1th into a function of
H1/L1 and R0;1th
R1th ¼
ðTm � T0Þ1th

q000pR2
0=kf

¼ 1
R2

0;1th

ðH1=L1Þ2

2p þ 2
3pku1;con

( )
þ 1

pku1;con

� R0;1th � 1
ðu=u1;conÞR0;1th � 1

1� 1
R0;1th

 !
1� 1

3
1� 1

R0;1th

 !2
24 35:

ð22Þ

Our constructal design is thus reduced into the minimization of
R1th with respect to R0;1th. This minimization is normally desirable
for two cases from the practical application point of view: (i) given
H1/L1, and (ii) given the total number of slabs N1 in periphery sec-
tors defined by

N1 ¼
2pR0

2H1
¼ pR0;1th

H1=L1
: ð23Þ
2.2.1. Minimize R1th with respect to R0;1th for given H1/L1

There are two means to resolve Eq. (17) for obtaining the con-
structal R0;1th. The first method (iteration method) is to solve the
implicit equation, by iteration,

@R1th

@R0;1th

¼ � 2
R3

0;1th

ðH1=L1Þ2

2p
þ 2

3pku~u1;con

" #

þ 1

3pkua
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A1

a

q 1
R0;1th

� 2
3R3

0;1th

þ 2a
R4

0;1th

� 8
3R4

0;1th

 

þ 6
R5

0;1th

� 16
3R6

0;1th

þ 5
3R7

0;1th

!
þ 1

pkuðR0;1th � ~u1;conÞ2

�
~u2

1;con

2a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A1

a

q �2R2
0;1th þ

8R0;1th

3
� 1

9
� 8

R0;1th

þ 14
3R2

0;1th

 264
þ 8

9R3
0;1th

þ 4
3R4

0;1th

� 16
3R5

0;1th

þ 41
9R6

0;1th

� 4
3R7

0;1th

!

�~u1;con
1

R4
0;1th

� 4
R3

0;1th

þ 2
R2

0;1th

þ 2
3

 !

þ 4
3R3

0;1th

� 4
R2

0;1th

þ 2
R0;1th

þ 4
3

 !375 ¼ 0: ð24Þ

The second method (function-evaluation method), numerically sim-
pler than the first method, first uses Eq. (22) to evaluate R1th at dif-
ferent R0;1th and then searches for the constructal R0;1th that gives the
minimum R1th value. For example, we can easily obtain the
R1th � R0;1th relation in Fig. 3 by the second method at H1/L1 = 0.1
and ku = 32 (for Cu–water nanofluids, k = 385/0.6; and thus we
have ku = 32 at u = 0.05). R1th reaches its minimum (0.00611) when
R0;1th ffi 3:26 at which ~u1;con ¼ 0:584 [Eq. (20)], eD0;1th;con ¼ 2:03 [Eq.
(14)] and N1,con = 103[Eq. (23)]. For zero-branching architecture,
the disc overall thermal resistance R0th ffi 0.00822 at H0/L0 = 0.1,
and tends to minimum value 0.00663 as H0/L0 ? 0. Therefore, the
one-branching constructal configuration is better than its zero-
branching counterpart for this case. Another striking feature is that
the one-branching constructal configuration is independent of n1.
Even when n1 = 1 so that one-branching architecture reduces to
zero-branching architecture, the overall thermal resistance is still
R1th because the constructal slab width is determined by eD0;1th;con ¼
2:03 and R0;1th ffi 3:26 and is thus not uniform over the whole slab.

Consistent with the slender-sector assumption, we made the
one-branching constructal design for different values of H1/L1 from
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0 to 0.4. Fig. 4 shows the variation of R1th,con, R0;1th;con; ~u1;con, eD0;1th;con

and N1,con with respect to H1/L1 at ku = 32. R0th [Eq. (3)] is also
shown in Fig. 4 for comparing the zero- and one-branching archi-
tectures. Since R1th,con is always smaller than the minimum resis-
tance of zero-branching architecture (0.00663 appearing at H0/
L0 = 0), the one-branching configuration is desirable for reducing
system overall thermal resistance. While R0th increases signifi-
cantly with the aspect ratio of periphery sectors [Eq. (3); Fig. 4],
the H1/L1 sensitivity of R1th,con is very weak. Effects of ku and H1/
L1 on R1th,con are shown in Fig. 5. Comparing with the ku-effect,
the effect of H1/L1 on R1th,con can be neglected. Actually, the data
in Fig. 5 can be well represented by, with a relative error within
6% for H1/L1 2 [0,0.4],

R1th;con ¼
0:196

ku
: ð25Þ

Variation of R0;1th;con with ku and H1 /L1 is shown in Fig. 6. R0;1th;con

increases almost linearly with ku. Its slope increases sensitively
with H1/L1.

2.2.2. Minimize R1th with respect to R0;1th for given N1

Note that ðH1=L1Þ2=ð2pR2
0;1thÞ ¼ p=ð2N2

1Þ in Eqs. (11) and (22).
With N1 as a priori known, Eq. (17) reduces into
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@R1th

@R0;1th

¼ 1
pku

@

@R0;1th

2
3R2

0;1th
~u1;con

þ R0;1th � 1
R0;1th � ~u1;con

1� 1
R0;1th

 !(

� 1� 1
3

1� 1
R0;1th

 !2
24 359=; ¼ 0: ð26Þ

Using Eq. (20) for ~u1;con � R0;1th relation, solving Eq. (26) by the
function-evaluation method yields the constructal configuration
and system thermal resistance

R0;1th;con ¼ 1:95; ð27Þ
~u1;con ¼ 0:762; ð28Þ

R1th;con ¼
p

2N2
1

þ 0:589
pku

: ð29Þ

Therefore, the constructal configuration (both R0;1th;con and ~u1;conÞ is
independent of ku and N1. When N1 approaches to infinity so that
H1/L1 tends to 0, R1th has its minimum value [0.589/(pku)].

The thermal resistance of zero-branching architecture [Eq. (3)]
can be expressed as p=ð2N2

0Þ þ 2=ð3pkuÞ, in which N0 [=2pR0/
(2H0)] is the total number of slabs. For the same number of slabs
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in the periphery sectors (all slabs in zero-branching architecture
are in the periphery sectors), we have

R0th � R1th;con ffi
0:025

ku
P 0: ð30Þ

Therefore, the one-branching constructal structure always offers
smaller system thermal resistance than the zero-branching config-
uration with the same number of slabs in the periphery sectors.
The difference between the two becomes, however, insignificant
as ku increases. The constructal R1th is smaller than the minimum
resistance of zero-branching architecture [2/(3pku); appearing at
N0 ?1] when

N1 > 7:97
ffiffiffiffiffiffiffi
ku

q
: ð31Þ
2.3. Two-branching architecture

Two-branching architecture consists of slabs that stretch radi-
ally to the distance L0 away from the central heat sink, continue
with n1 branches that stretch radially to the distance of L1, and
further extends reach the rim with n2 branches [Fig. 1(c)]. Its
elemental sector, as shown in Fig. 2(c), contains one stem of
aspect ratio H0/L0, n1 tributaries of aspect ratio H1/L1, and n1n2

tributaries of aspect ratio H2/L2. L0, L1 and L2 are the slab lengths
in central sectors (Level-0 sectors), middle sectors (Level-1 sec-
tors), and periphery sectors (Level-2 sectors), respectively. They
also represent the distances from the central heat sink (T0) to
the confluence point of the n1 branches in Level-1 sectors (Tc1),
from the confluence point (Tc1) to the confluence point of the
n2 branches in Level-2 sectors (Tc2), and from the point (Tc2) to
the hot spot (Tm), respectively. The goal is to assemble a number
of branched sectors into the complete disc for a minimum overall
thermal resistance R2th.

By applying the results for one-branching architecture [Eq.
(10)], (Tm � Tc1) can be calculated by

ðTm � Tc1Þ2th ¼ ðTm � Tc2Þ þ ðTc2 � Tc1Þ

¼ q000H2L2

kf

1
2

H2

L2
þ 2

3ku2

L2

H2

� �
þ q000L1

kpD1

2
3

H1L1 þ
n2H2

R1
ðR2

1 � L2
1Þ

� �
: ð32Þ

Here u2 is the slab volume fraction in Level-2 sectors. R1 is the dis-
tance from the confluence point of Level-1 slabs to the rim, so that
R1 = L1 + L2.

The Tc1 tip receives the heat which equals to the heat generation
in the area between the arc with radius L0 and the outer peripheral
circumference. Following a similar analysis as that for one-branch-
ing architecture, we obtain

ðTc1 � T0Þ2th ¼
q000L0

kpD0

2
3

H0L0 þ
n1n2H2

R0
ðR2

0 � L2
0Þ

� �
: ð33Þ

Therefore, by adding Eqs. (32) and (33),
ðTm � T0Þ2th ¼
q000H2L2

kf

1
2

H2

L2
þ 2

3ku2

L2

H2

� �
þ q000L1

kpD1

2
3

H1L1 þ
n2H2

R1
ðR2

1 � L2
1Þ

� �
þ q000L0

kpD0

2
3

H0L0 þ
n1n2H2

R0
ðR2

0 � L2
0Þ

� �
: ð34Þ
The disc overall thermal resistance R2th is thus

R2th ¼
ðTm � T0Þ2th

q000pR2
0=kf

¼ 1
R2

0;2thR2
1;2th

ðH2=L2Þ2

2p
þ 2

3pku2

" #

þ 1
pku2

1eD1;2th

1� 1
R1;2th

 !
1� 1

3
1� 1

R1;2th

 !2
24 35

þ 1
pku2

1eD0;2th

1� 1
R0;2th

 !
1� 1

3
1� 1

R0;2th

 !2
24 35; ð35Þ

where R0;2th;R1;2th; eD0;2th, and eD1;2th are defined by

R0;2th ¼
R0

R1
; R1;2th ¼

R1

L2
; eD0;2th ¼

D0

n1n2D2
; eD1;2th ¼

D1

n2D2
: ð36Þ

Here D0, D1 and D2 are the slab widths in Level-0, Level-1 and Level-
2 sectors, respectively [Fig. 2(c)].

Define u1�2 as the average slab volume fraction in all Level-1
and Level-2 sectors

u1�2 ¼
n2D2L2 þ D1L1

n2H2R1
; ð37Þ

so that eD1;2th can be written as

eD1;2th ¼
ðu1�2=u2ÞR1;2th � 1

R1;2th � 1
; u2 < u1�2R1;2th: ð38Þ

Also,

u ¼ D0L0 þ n1D1L1 þ n1n2D2L2

n1n2H2R0
: ð39Þ

Therefore we can express u2
eD0;2th in Eq. (35) by using u1�2, u and

R0;2th

u2
eD0;2th ¼

uR0;2th �u1�2

R0;2th � 1
: ð40Þ

Substituting Eqs. (38) and (40) into Eq. (35) yields

R2th ¼
1

R2
0;2th

(
1

R2
1;2th

ðH2=L2Þ2
2p þ 2

3pku2

h i
þ 1

pku2

R1;2th�1

ðu1�2=u2ÞR1;2th�1
1� 1

R1;2th

� �

� 1� 1
3

1� 1
R1;2th

 !2
24 359=;þ 1

pku1�2

R0;2th � 1
ðu=u1�2ÞR0;2th � 1

� 1� 1
R0;2th

 !
1� 1

3
1� 1

R0;2th

 !2
24 35: ð41Þ

The term in the braces {} is the same as the one obtained by replac-
ing R0;1th, H1/L1, u1 and u in R1th with R1;2th, H2/L2, u2 and u1�2,
respectively. Moreover, R1;2th, H2/L2 and u2 appear only in the term
in the braces {}. Hence the R0;1th;con in Fig. 6 and the ~u1;con in Eq. (20)
can be directly applied to obtain the constructal R1;2th;con and ~u2;con

simply replacing H1/L1 and u with H2/L2 and u1�2. After applying
the constructal R1;2th and u2, the overall resistance R2th is a function
of (H2/L2, u1�2, R0;2th). As

@R2th

@ðH2=L2Þ
¼ H2=L2

pR2
0;2thR2

1;2th

P 0; ð42Þ

R2th is a monotonic function of H2/L2. Therefore, our constructal de-
sign reduces into the minimization of R2th with respect to u1�2 and
R0;2th under either given H2/L2 or given number N2 of slabs in all
periphery sectors defined by

N2 ¼
2pR0

2H2
¼ pR0;2thR1;2th

H2=L2
: ð43Þ
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Fig. 7. Effect of aspect ratio H2/L2 on constructal configuration and system thermal
resistance of two-branching architecture.
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2.3.1. Minimize R2th for given H2/L2

Based on Eq. (41), we made the constructal design (the minimi-
zation of R2th with respect to u1�2 and R0;2thÞ under specified H2/L2

from 0 to 0.4. Fig. 7 shows the variation of R1th,con, R2th,con, R0;2th;con,
R1;2th;con, ~u2;con and ~u1�2;con with respect to H2/L2 at ku = 32. It shows
that variations of R0;2th;con and ~u1�2;con are very small in H2/
L2 2 [0,0.4]. The relative variation of R2th,con is less than 5% with
H2/L2 changing from 0 to 0.4. R2th,con is 5–10% smaller than R1th,con

for every value of H2/L2 (H1/L1 for R1th,con) less than 0.4, and is al-
ways smaller than the minimum value of R1th,con [0.00586 at H1/
L1 ? 0 or N1 ?1; Eq. (29)].

If we neglect the weak effect of H2/L2 and H1/L1, we can approx-
imate the term in the braces {} in Eq. (41) by 0.196/(ku1�2) [Fig. 5
and Eq. (25)] so that

R2th¼
1

R2
0;2th

0:196
ku1�2

þ 1
pku1�2

R0;2th�1
ðu=u1�2ÞR0;2th�1

1� 1
R0;2th

 !
1�1

3
1� 1

R0;2th

 !2
24 35:

ð44Þ

The minimization of R2th with respect to u1�2 requires

@R2th

@u1�2
¼ 1

pk
@

@u1�2

0:196p
R2

0;2thu1�2

þ R0;2th � 1
uR0;2th �u1�2

1� 1
R0;2th

 !(

� 1� 1
3

1� 1
R0;2th

 !2
24 359=; ¼ 0: ð45Þ

Its solution is readily obtained by Eqs. (19)–(21),

~u1�2;con ¼ u1�2;con=u ¼
0:196pR0;2th

A21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A21

0:196p

r
� 1

 !
; ð46Þ

where

A21 ¼ ðR0;2th � 1Þ 1� 1
R0;2th

 !
R2

0;2th �
1
3

1� 1
R0;2th

 !2
24 35� 0:196p:

ð47Þ

After substituting Eq. (46) into Eq. (44), the minimization of R2th

with respect to R0;2th becomes resolving
@R2th

@R0;2th

¼ 1
pku

@

@R0;2th

0:196p
R2

0;2th
~u1�2;con

þ R0;2th � 1
R0;2th � ~u1�2;con

1� 1
R0;2th

 !(

� 1� 1
3

1� 1
R0;2th

 !2
24 359=; ¼ 0: ð48Þ

Its solution is, by the function-evaluation method,

R0;2th;con ¼ 1:62; ð49Þ
~u1�2;con ¼ 0:819; ð50Þ

R2th;con ¼
0:568
pku

: ð51Þ

Therefore, the constructal configuration (both R0;2th;con and
~u1�2;conÞ is independent of ku and H2/L2. The invariance of the con-
structal configuration with H2/L2 come from the negligible effect of
H2/L2 on the overall resistance. Like R1th,con, R2th,con is also inversely
proportional to ku. Also,

R2th;con

R1th;con
ffi 0:92: ð52Þ

Therefore, we can reduce the system resistance by 8% by shifting
the configuration from one- to two-branching structure.

A comparison of R2th,conin Eq. (51) with its exact value shows
that Eq. (51) is accurate within 2.5%. Note also that the accuracy
of Eq. (25) is 6%. Therefore, the effect of the aspect ratio on the con-
structal overall thermal resistance will become weaker and weaker
as the branching level increases.

2.3.2. Minimize R2th for given N2

Note that in Eq. (41) ðH2=L2Þ2=ð2pR2
0;2thR2

1;2thÞ ¼ p=ð2N2
2Þ by using

Eq. (43). R2th reduces to

R2th¼
p

2N2
2

þ 1
R2

0;2th

1
R2

1;2th

2
3pku2

þ 1
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ðu1�2=u2ÞR1;2th�1
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 !(

� 1�1
3

1� 1
R1;2th

 !2
24 359=;þ 1
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 !

� 1�1
3

1� 1
R0;2th

 !2
24 35: ð53Þ

According to the result for the one-branching architecture, the
term in the braces {} has its minimum value [0.589/(pku1�2), Eq.
(29)] when R1;2th ¼ 1:95 [Eq. (27)]. By replacing the term in the
braces {} with [0.589/(pku1�2)] in Eq. (53), Eq. (53) becomes

R2th ¼
p

2N2
2

þ 1
pku

0:589
R2

0;2th
~u1�2

þ R0;2th � 1
R0;2th � ~u1�2

1� 1
R0;2th

 !(

� 1� 1
3

1� 1
R0;2th

 !2
24 359=;: ð54Þ

The minimization of R2th with respect to u1�2 requires

@R2th

@ ~u1�2
¼ 1

pk
@

@u1�2

0:589
R2

0;2thu1�2

þ R0;2th � 1
uR0;2th �u1�2

1� 1
R0;2th

 !(

� 1� 1
3

1� 1
R0;2th

 !2
24 359=; ¼ 0: ð55Þ

Its solution reads, by Eq. (19)–(21),

~u1�2;con ¼
u1�2;con

u
¼ 0:589R0;2th

A22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A22

0:589

r
� 1

 !
; ð56Þ
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where

A22 ¼ ðR0;2th � 1Þ 1� 1
R0;2th

 !
R2

0;2th �
1
3

1� 1
R0;2th

 !2
24 35� 0:589:

ð57Þ
After substituting Eq. (56) into Eq. (54), the minimization of R2th

with respect to R0;2th reduces into resolving,

@R2th

@R0;2th

¼ 1
pku

@

@R0;2th

0:589
R2

0;2th
~u1�2;con

þ R0;2th � 1
R0;2th � ~u1�2;con

1� 1
R0;2th

 !(

� 1� 1
3

1� 1
R0;2th

 !2
24 359=; ¼ 0: ð58Þ

Its solution is readily available by using the function-evaluation
method,

R0;2th;con ¼ 1:48; ð59Þ
~u1�2;con ¼ 0:848; ð60Þ

R2th;con ¼
p

2N2
2

þ 0:555=p
ku

: ð61Þ

For the same number of slabs in the periphery sectors, Eqs. (29) and
(61) yields

R1th;con � R2th;con ffi
0:011

ku
P 0: ð62Þ

Therefore, the two-branching constructal structure always of-
fers smaller system overall thermal resistance than the one-
branching configuration with the same number of slabs in the
periphery sectors. The difference between the two becomes insig-
nificant as ku increases. The constructal R2th is also smaller than
the minimum R1th,con [0.589/(pku), Eq. (29)] when

N2 > 12:05
ffiffiffiffiffiffiffi
ku

q
: ð63Þ
2.4. M-branching architecture

Our constructal design can be made up to M-branching archi-
tecture in which the sectors from the center to rim are named in
sequence as Level-0, Level-1, Level-2, until Level-M sectors. Here
M can be any natural number. The system overall temperature dif-
ference (Tm � T0)Mth is the sum of (Tm � Tc1)Mth and (Tc1 � T0)Mth, in
which (Tm � Tc1)Mth is available from the (M � 1)-branching analy-
sis, simply renumbering the parameters from Level-0 to Level-
(M � 1) with the corresponding parameters from Level-1 to Le-
vel-M. Define the relative radius

Ri ¼
Ri

Riþ1
ði ¼ 0;1; . . . ;M � 1Þ; ð64Þ

where Ri is the distance from the confluence point of the slabs in Le-
vel-i sectors to the rim such that

Ri ¼
XM

j¼i

Lj ði ¼ 0;1; . . . ;MÞ; ð65Þ

with Lj being the length of slabs in Level-j sectors. The system over-
all thermal resistance RMth can thus be written as

RMth ¼
ðTm � T0ÞMth

q000pR2
0=kf

¼ ðTm � Tc1ÞMth � ðTc1 � T0ÞMth

q000pR2
0=kf

¼ 1
R2

0;Mth

RðM�1Þth
� �

þ 1
pku1�M

� R0;Mth � 1
ðu=u1�MÞR0;Mth � 1

1� 1
R0;Mth

 !
1� 1

3
1� 1

R0;Mth

 !2
24 35:

ð66Þ
Here R(M�1)th is the overall resistance for (M � 1)-branching archi-
tecture in which the parameters in Level-i replaced by the parame-
ters in Level-(i + 1) with i ranging from 0 to (M � 1). u1�M denotes
the slab volume fraction in all sectors from Level-1 to Level-M.

Define the non-dimensional slab width

eDi ¼
Di

DM
QM

j¼iþ1nj

ði ¼ 0;1; . . . ;M � 1Þ; ð67Þ

where Di is the slab width in Level-i sectors, and nj is the number of
branches bifurcated from one slab in Level-(j � 1) sectors. RMth

becomes

RMth ¼
1QM�1

i¼0 R2
i

ðHM=LMÞ2

2p
þ 2

3pkuM

" #
þ 1

pkuM

XM�1

i¼0

1eDi

� 1Qi�1
j¼0R2

j

1� 1
Ri

� �
1� 1

3
1� 1

Ri

� �2
" #

: ð68Þ

We can then perform our constructal design by recursion up to
the M-branching architecture to find its constructal configuration
for minimized overall thermal resistance. The configurational
parameters to be determined include: the relative radius Ri and
slab volume fraction u(i+1)�M for i = 0,1, . . . ,M � 1, with either the
aspect ratio of the periphery sectors (Level-M sectors, HM/LM) or
the total number of slabs in the periphery sectors (NM) as a given
restriction, from which the slab width in each level ðeDi; i ¼ 0;
1; . . . ;M � 1Þ and the aspect ratio of sectors of other levels (Hi/Li,
i = 0,1, . . . ,M � 1) can be obtained. The striking feature of the over-
all thermal resistance is its invariance with the numbers of bifur-
cated slabs in all levels (ni; i = 1,2, . . . ,M).

2.4.1. Minimize RMth for given HM/LM

In a precise sense, the constructal geometry and corresponding
constructal thermal resistance RMth,con always depend on the value
of HM/LM. However, the effect of HM/LM becomes weaker and weak-
er with M increasing. When ku = 32, for example, R0th,con, R1th,con

and R2th,con increase by 384%, 11% and 5%, respectively, with H0/
L0, H1/L1 or H2/L2 increasing from 0 to 0.4 (Figs. 4 and 7). The effect
of H2/L2 on R0;2th;con and ~u1�2;con is much weaker than the effect of
H1/L1 on R0;1th;con and ~u1;con (Fig. 7). Therefore we neglect this weak
effect in designing the M-branching architecture. Following a sim-
ilar procedure as that used to obtain Eqs. (49)–(51), we can rewrite
the overall thermal resistance RMth as

RMth ¼
1

R2
0;Mth

fRðM�1Þthg

þ R0;Mth � 1
pkuR0;Mth � pku1�M;con

1� 1
R0;Mth

 !
1� 1

3
1� 1

R0;Mth

 !2
24 35

¼ aðM�1Þ1

pku1�MR2
0;Mth

þ R0;Mth � 1
pkuR0;Mth � pku1�M;con

1� 1
R0;Mth

 !
1� 1

3
1� 1

R0;Mth

 !2
24 35:

ð69Þ
Here a(M�1)1 is the constant appearing in R(M�1)th,con, and a21 has
been shown to be 0.568. The minimization of RMth with respect to
u1�M,con requires

@RMth

@u1�M;con
¼ 1

pk
@

@u1�M;con

aðM�1Þ1

R2
0;Mthu1�M;con

þ R0;Mth � 1
uR0;Mth �u1�M;con

8<:
� 1� 1

R0;Mth

 !
1� 1

3
1� 1

R0;Mth

 !2
24 359=; ¼ 0:

ð70Þ
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Its solution is, by Eq. (19)–(21),

~u1�M;con ¼ u1�M;con=u ¼
aðM�1Þ1R0;Mth

AM1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ AM1

aðM�1Þ1

s
� 1

 !
; ð71Þ

where

AM1 ¼ ðR0;Mth � 1Þ 1� 1
R0;Mth

 !
R2

0;Mth �
1
3

1� 1
R0;Mth

 !2
24 35� aðM�1Þ1:

ð72Þ

After substituting Eq. (71) into Eq. (69), we can minimize RMth with
respect to R0;Mth by resolving

@RMth

@R0;Mth

¼ 1
pku

@

@R0;Mth

8<: aðM�1Þ1

R2
0;Mth

~u1�M;con
þ R0;Mth � 1

R0;Mth � ~u1�M;con

� 1� 1
R0;Mth

 !
1� 1

3
1� 1

R0;Mth

 !2
24 359=; ¼ 0: ð73Þ

We then apply the function-evaluation method to obtain

RMth;con ¼
aM1

pku
; ð74Þ

R0;Mth;con ¼ bM1; ð75Þ
~u1�M;con ¼ cM1; ð76Þ
where aM1, bM1 and cM1 are listed in Table 1. The constructal slab
volume fraction increases from the periphery sectors to the central
sectors (cM1 in Table 1). The constructal disc overall thermal resis-
tance decreases with M increasing (aM1 in Table 1). However, the
decreasing rate becomes smaller and smaller.

2.4.2. Minimize RMth for given NM

Note that in Eq. (68)

ðHM=LMÞ2

2p
QM�1

i¼0 R2
i

¼ p
2N2

M

: ð77Þ

Hence R2th reduces into

RMth ¼
p

2N2
M

þ 1
R2

0;Mth

RðM�1Þth �
p

2N2
ðM�1Þ

( )

þ R0;Mth � 1
pkuR0;Mth � pku1�M;con

1� 1
R0;Mth

 !
1� 1

3
1� 1

R0;Mth

 !2
24 35:

ð78Þ
Table 1
Constants in Eqs. (74)–(76) (specified aspect ratio in periphery sectors) and (83)–(85)
(specified number of slabs in periphery sectors).

M aM1 bM1 cM1 aM2 bM2 cM2

1 – – – 0.589 1.95 0.762
2 0.568 1.62 0.819 0.555 1.48 0.848
3 0.543 1.38 0.869 0.535 1.33 0.884
4 0.527 1.28 0.896 0.521 1.25 0.905
5 0.515 1.23 0.913 0.511 1.21 0.919
6 0.507 1.19 0.924 0.504 1.18 0.929
7 0.500 1.16 0.933 0.498 1.15 0.936
8 0.495 1.14 0.940 0.493 1.14 0.943
9 0.491 1.13 0.945 0.489 1.12 0.948

10 0.487 1.12 0.950 0.486 1.11 0.952
11 0.484 1.11 0.954 0.483 1.10 0.955
12 0.482 1.10 0.957 0.480 1.09 0.958
The constructal u1�M,con to minimize RMth can be obtained from

@RMth

@u1�M
¼ @

@u1�M

aðM�1Þ2

R2
0;Mthu1�M

þ R0;Mth � 1
uR0;Mth �u1�M

1� 1
R0;Mth

 !(

� 1� 1
3

1� 1
R0;Mth

 !2
24 359=; ¼ 0: ð79Þ

Clearly, a12 and a22 are 0.589 and 0.555, respectively, as shown
in Eqs. (29) and (61). The solution of Eq. (79) is, by Eq. (19)–(21),

~u1�M;con ¼ u1�M;con=u ¼
aðM�1Þ2R0;Mth

AM2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ AM2

aðM�1Þ2

s
� 1

 !
; ð80Þ

where

AM2 ¼ ðR0;Mth � 1Þ 1� 1
R0;Mth

 !
R2

0;Mth �
1
3

1� 1
R0;Mth

 !2
24 35� aðM�1Þ2:

ð81Þ

After substituting Eq. (80) into Eq. (78), the minimization of RMth

with respect to R0;Mth requires

@RMth

@R0;Mth

¼ 1
pku

@

@R0;Mth

8<: aðM�1Þ2

R2
0;Mth

~u1�M;con
þ R0;Mth � 1

R0;Mth � ~u1�M;con
� 1

R0;Mth

 !

� 1� 1
3

1� 1
R0;Mth

 !2
24 359=; ¼ 0: ð82Þ

We then apply the function-evaluation method to obtain

RMth;con ¼
p

2N2
M

þ aM2

pku
; ð83Þ

R0;Mth;con ¼ bM2; ð84Þ
~u1�M;con ¼ cM2; ð85Þ

where aM2, bM2 and cM2 are also listed in Table 1. The constructal
geometry of M-branching architecture has approximately the same
slab length in every level (bM2 in Table 1). The constructal slab vol-
ume fraction decreases from Level-0 to Level-M sectors (cM2 in Table
1). With the increase of branching level M, the constructal overall
thermal resistance decreases with the rate of decreasing becoming
smaller and smaller (aM2 in Table 1). Note also that Ri;Mth;con and
~uðiþ1Þ�M;con for M-branching architecture are equivalent to
R0;ðM�iÞth;con and ~u1�ðM�iÞ;con for (M � i)-branching architecture.

Our analysis of either specified aspect ratio or specified slab
number in the periphery sectors shows that the constructal overall
resistance can be reduced via using more branching configuration.
This reduction is however not necessarily true in the other systems
[15,16]. Note also that the constructal configuration and resistance
are independent of the numbers of bifurcated slabs at any branch-
ing levels (ni; i = 1,2, . . . ,M). In case of ni(i = 1,2, . . . ,M) = 1, the con-
structal configuration reduces into the one like the zero-branching
structure, but with the variation of the slab width from one level to
another. The constructal slab width at i-level (eDi;Mth;conÞ can be ob-
tained by

eDi;Mth;con ¼
Di;Mth

Diþ1;Mth

¼ 1QM�1
j¼iþ1 ~u1�ðM�jÞ;con

~u1�ðM�iÞ;conR0;ðM�iÞth � 1
R0;ðM�iÞth � 1

: ð86Þ

The constructal slab width thus increases from periphery sectors
to central sectors (Table 1). This is consistent with the result in
[13] that the optimal shape of the high-conductivity slab is the
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one with the thicker root at disc center and the blunt tip at disc
rim (Fig. 2 in [13]).
3. Concluding remarks

Practical applications of nanofluids as the heat-conduction flu-
ids often have an ultimate system aim such as minimization of sys-
tem highest temperature and minimization of system overall
thermal resistance. The microstructural optimization for the best
system performance is however a very difficult, unresolved prob-
lem of inverse type. We have thus developed a constructal ap-
proach that is based on the constructal theory, converts the
inverse problem into a forward one by first specifying a type of
microstructures and then optimizing system performance with re-
spect to the available freedom within the specified type of micro-
structures, and enables us to find the constructal microstructure
(the best for the optimal system performance within the specified
type of microstructures).

The constructal design of nanofluids with any branching level of
tree-shaped nanoparticle configuration is made to cool a circular
disc with uniform heat generation and a central heat sink. The ob-
tained constructal structure provides the best distributions of rel-
ative lengths of sectors and particle volume fractions which
minimize the system overall resistance with either the aspect ratio
or the total number of periphery sectors as a priori known. The
constructal slab length varies little from one level to another ex-
cept the periphery sectors for given aspect ratio of the periphery
sectors. The constructal particle volume fraction increases from
peripheral to central sectors. The constructal configuration has
some universal features of independent of: (i) numbers of bifur-
cated slabs at any branching levels, (ii) fluid and particle proper-
ties, and (iii) particle overall volume fraction.

The constructal system thermal resistance is inversely propor-
tional to the product of particle–fluid conductivity ratio and parti-
cle overall volume fraction. The proportional coefficient is constant
with its value decreasing as the branching level increases. There-
fore, the constructal system resistance can be made smaller for
fixed material properties and particle overall volume fraction by
using more level of branching structure. With the prescribed total
slab number in the periphery sectors, the constructal system resis-
tance decreases as the slab number increases. With the prescribed
aspect ratio of periphery sectors, the constructal system resistance
decreases with decreasing aspect ratio. This dependency is how-
ever very weak except the zero-branching architecture and be-
comes even weaker as the branching level increases. Therefore
this dependency can be practically neglected.

The constructal approach developed in the present work is also
valid for other problems of inverse or downscaling type.
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