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Analytical theory of bioheat transport
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Macroscale thermal models for biological tissues can be developed either by the mixture theory of
continuum mechanics or by the porous-media theory. Characterized by its simplicity, the former
applies scaling-down from the global scale. The latter uses scaling-up from the microscale by the
volume averaging, thus offers the connection between microscale and macroscale properties and is
capable of describing the rich blood-tissue interaction in biological tissues. By using the porous-media
approach, a general bioheat transport model is developed with the required closure provided. Both
blood and tissue macroscale temperature fields are shown to satisfy the dual-phase-lagging (DPL)
energy equations. Thermal waves and possible resonance may appear due to the coupled conduction
between blood and tissue. For the DPL bioheat transport, contributions of the initial temperature
distribution, the source term and the initial rate of change of temperature are shown to be inter-
expressible under linear boundary conditions. This reveals the solution structure and considerably
simplifies the development of solutions of the DPL bioheat equations. Effectiveness and features of the
developed solution structure theorems are demonstrated via examining bioheat transport in skin tissue

and during magnetic hyperthermia. © 2011 American Institute of Physics. [doi:10.1063/1.3580330]

. INTRODUCTION

The study of heat transport in biological tissues has
always been and will continually be a significant but difficult
problem. It is well recognized that the change of local temper-
ature has considerable effect on the rates of nearly all physio-
logical functions'? so that many therapeutic or diagnostic
procedures target temperature as a primary controlling or
monitoring parameter, such as hyperthermia,® cryosurgery,*
laser irradiation,” and temperature-based disease diagnostics.®
Unfortunately, accurate quantification of bio-transport proc-
esses is rather difficult due to the complex thermal interaction
between vascular and extra-vascular systems. The complexity
comes from several factors peculiar to living tissues, including
the intricate anatomical structure, the blood flow in vessels,
and the blood perfusion. More sophistically, these factors are
sensitive to outside influence such as temperature.

Some proposed bio-transport models inclusive of all
early models regard the tissues of interest as a continuum in
which the large number of vessels are collectively accounted
to avoid considering the microscopic anatomical structure.
The governing equations are for the macroscopic temperature
field with several source terms describing the thermal interac-
tion between blood and surrounding tissues (e.g., blood con-
vective heat transfer and blood perfusion) as well as the
production and external supply of heat (e.g., metabolic heat
generation and external heat supply during therapeutic proce-
dures). This is consistent with our general interests in the phe-
nomenological scale (macroscale) rather than molecular scale
or microscale of heat transport for practical applications.

The development of a bioheat model by using the con-
tinuum approach is based on the macroscale point equation
of energy conservation:
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d(pcT
Q =V Qac + 4m,mac + qc.mac + 4dp,mac + Ge.mac

(1.1)

where the subscript mac is used to indicate the macroscale
properties. p and ¢ are density and specific heat, respectively.
T denotes the temperature and ¢ the time. q denotes the heat
flux density vector. g,,, ¢., and g, are the volumetric rates of
heat generation by the metabolic heating, the blood convec-
tive heat transfer and the blood perfusion, respectively. g, is
the volumetric rate of external heat supply like the one used
in hyperthermia therapy. Two major issues are thus: (i) the
selection of the constitutive relation of heat flux density, and
(i1) the expressions of the source terms to describe the inter-
action between blood and surrounding tissues. Note that the
temperature of the extravascular tissues is often identified as
the temperature of the continuum based on the argument that
blood occupies only a small portion so that it has little effect
on the continuum’s temperature.

As the first constitutive relation of heat flux density, Four-
ier’s law [Eq. (1.2)] has been used to build macroscale bioheat
model since the pioneering work of Pennes.’

q(rvt) = _kVT(r7t)7 (1.2)

where r stands for the material point, k is the thermal con-
ductivity, and V is the gradient operator. Some other models
were also proposed by assuming Fourier heat conduction,
but with different descriptions for the blood-tissue interac-
tion. The Fourier’s-law-based bioheat model reads:

d(pcT), .
% =-V. (kVT)mac + Gmmac + 4emac
+ 4p,mac + 9emac- (1.3)

Table I summarizes the expressions of the four source terms
in Eq. (1.3) in the typical continuum models proposed by
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TABLE I. Source terms in Pennes, Wulff, Klinger and Chen and Holmes models (superscript b and ¢ indicating blood
properties and tissue properties, respectively; w”: blood perfusion rate; T¢: temperature of the arterial blood supply; v;,:
local mean blood velocity; Ah: enthalpy of formation in metabolic reaction; ¢: extent of reaction; v,: blood mean
permeation velocity; @*: blood perfusion rate only in the small vessels that are collectively treated; 7¢*: temperature of
the arterial blood supply to the small vessels).

Model qm7;1za(' qcmac qp‘ma(‘ emac
Pennes 4m,mac 0 (pc)ﬁm(:wb (T:mu - T;[mzc) 0
Waulff PracVi IV (P eV T 0 0
Klinger 4m,mac - (pc)i:mfvfna('VT:nm' 0 0
Chen and Holmes qm,mac _(pc)ﬁmcvli : VT;naL- (pc)fna(-w* (Tfna(-* - T;mc) 0

Pennes,’ \Nulff,8 Klinger,9’10 and Chen and Holmes."!
Pennes’ neglected the convective heat flux ¢. based on the
assumption of very low blood velocity and postulated that
heat transfer between blood and surrounding tissues mainly
occurs in the capillary bed so that the blood perfusion heat
flux g, can be modeled as an isotropic heat source which is
proportional to the blood perfusion rate and the temperature
difference between the local tissue and the arterial blood sup-
ply. Wulff,® Klinger,”'” and Chen and Holmes'' questioned
Pennes’ assumptions, included the convection heat flux in
the models and thus considered the effects of blood flow
direction on bioheat transfer processes.

With the development of high-intensity and extremely-
short-duration heating technologies, the hypothesis of infinite
heat propagation speed in the Fourier’s law becomes unac-
ceptable. Cattaneo'? and Vernotte'*'* proposed the so-called
CV constitutive relation:

oq(r, )
ot

where 7, > 0 is a material property called the relaxation
time. The CV relation is a first-order approximation of the
single-phase-lagging model '

q(r,t+14) = —kVT(r,1)

q(r,7) + 1, = —kVT(r,1), (1.4)

(1.5)

according to which the temperature gradient established at a
point r at time ¢ gives rise to a heat flux vector at r at a later
time 7 + 7. The corresponding heat conduction equation by
applying the CV constitutive relation to Eq. (1.1) is usually
called the thermal wave model of bioheat transfer (TWMBT)
or the hyperbolic bioheat model, which is of hyperbolic type,
characterizing the combined diffusion and wavelike behavior
of heat conduction and predicting a finite speed of heat prop-
agation.'® In the existing TWMBT, the source terms in Eq.
(1.1) are usually treated similarly as the Pennes model:
neglecting the convection heat flux and including an iso-
tropic blood perfusion source.'”™'* Assuming constant physi-
cal properties, the model has the form of

(pca))fnm. 8Tmac aszac
T,
ot o

(PO mac

b
2 (:0 Ca))ma(~
= ama('v Tmac + W (T:mc - Tmac)
1

— |1+ qu (qu,mac + qe,mac)
(pc)mac at

I +1,

n (1.6)

where o is the thermal diffusivity. " and T?, as defined in Ta-
ble I, are blood perfusion rate and arterial blood temperature,
respectively. TWMBT has been applied to analyze different
types of bioheat transfer processes, such as the temperature
variation in radio frequency heating and pulsed laser treat-
ment,' the temperature and thermal dose distributions in living
tissues during thermal therapies,'® the prediction of thermal
stresses in skin during (:ryopreservation,20 the temperature and
thermal damage distributions in skin tissue under different
heating conditions.'”*'** Based on the reported experimental
values of 7, for biological systems, which can be up to more
than 10 s so that much larger than that of the ordinary homoge-
neous materials (on the order of 1074 — 10~8 §)*** TWMBT
usually gives different predictions from Pennes model on the
thermal behavior of living tissues when the time scale of inter-
est is no more than the order of a few seconds.

While the CV relation only takes account of the fast-
transient effects, the dual-phase-lagging (DPL) constitutive
relation includes the micro-structural interactions as well as
the fast-transient effects”®’

q(r,t+14) = —kVT(r,t +17). (1.7)

According to this relation, the temperature gradient at a point
r of the material at time ¢ + t7 corresponds to the heat flux
density vector at time 4 7,. The delay time 77 is interpreted
as being caused by the micro-structural interactions, such as
phonon-electron interaction or phonon scattering, and is
called the phase-lag of the temperature gradient. In some lit-
erature, the first-order Taylor expansion of Eq. (1.7) is also
called the DPL constitutive relation
oq(r, 1)

q(r,7) + v —k{VT(r7 1)+ TT% [VT(r, t)]}

(1.8)

Combining Eq. (1.8) with the equation of energy conser-

vation, Eq. (1.1), results in the DPL model of bioheat trans-

fer, in which the source terms are also usually treated in the
same way as Pennes model:>!?

(pco)’ | oae  PToae
1 mac
T 00 | O 08

7
= O‘macvamac + umacTT E (vamaz)

b
4 (pcw)mac ( a

T¢ . — Toac) +% l+71 9
(pc)mar mae e (pc)mac ! 8t

X (qm,mac + Qe’,ma(,') N (1.9)
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This equation is parabolic when 1, < 77, and thus predicts a
nonwavelike heat conduction that differs from the usual
diffusion predicted by the classical parabolic heat conduction
equation (1.3). When 1, > 17, however, Eq. (1.9) predomi-
nantly predicts wavelike thermal signals. Also note that the
DPL heat conduction equation (1.9) reduces to Pennes model
when 1, = 77 = 0, and the hyperbolic bioheat model when
1, > 17 = 0. Moreover, the second-order DPL constitutive
relations can be obtained by retaining up to the second order
Taylor expansions for ¢, 7, or both, in Eq. (1.7).26 The
readers are referred to Refs. 21, 23, and 29 for the DPL mod-
els of bioheat transfer based on the higher order DPL consti-
tutive relations. It has been shown that the DPL models can
predict significantly different thermal behavior in magnetic
hyperthermia, laser-irradiation and skin bioheat transfer
processes from both the TWMBT and Fourier-type Pennes
models,3:21:23:28.30

Basically, solving of the continuum models requires
reliable data about the macroscale properties of the contin-
uum, such as thermal conductivity, thermal diffusivity, per-
fusion rate, metabolic heat generation, and phase lags of the
heat flux and the temperature gradient. Determination of
these thermal properties is a technically challenging task,
however, due to (i) the strong coupling among different
heat transfer mechanisms in the tissues, (ii) the complex
mechanical and thermal interactions between the instrument
and tissue, (iii) the property nonuniformity due to the tissue
heterogeneity, (iv) the significant sample-to-sample variabil-
ity, and (v) the high sensitivity of tissue properties to out-
side influence.? For the systems containing large vessels
which cannot be regarded as a part of the continuum, Chen
and Holmes suggested that they should be modeled on an
individual basis.""

Arteries and veins often appear as closely spaced pairs
with different flow directions and temperatures.’’ Although
there is no direct mass transfer between a countercurrent
vessel pair, there can be an energy transfer through the heat
conduction between arteries and tissue, and between veins
and tissue.”’ Models were then developed by taking this
energy transfer (and possibly pulsating countercurrent due
to heart beating) into consideration.”' ™' The effect of vas-
cular geometry (e.g., diameter, number density, and flow
direction) has been involved in these more advanced
models.

Although the early continuum-based bioheat models
provide a usable approach for quantified prediction of the
thermal behavior in biological tissues, they have not taken
some important factors into account and involve many
assumptions, therefore have moderate application range and
accuracy. Note that the biological tissues can be regarded as
blood-saturated porous media with extravascular tissues
being the solid matrix. Several groups have applied porous
media approach for developing bioheat models, because it
has the potential to well reflect the influence of microscale
physics on macroscale properties with minimized assump-
tions involved.**™** As the most advanced one, Nakayama
and Kuwahara’s* two-equation macroscopic bioheat model
has a form of

In the blood phase

J. Appl. Phys. 109, 104702 (2011)

T )’
(pcs)i)nac <¥ + anac : V<Tr]:1i('>b>
=V {<<8k>21ac+8bkdis> : V<Tr]:1ir>b:|

(1) = (1))

- (Pcw)zm (<Tfnic>b - <Titﬂi(:>f) (1.10)
In the tissue phase
L\ 8<Trtnic>t _ t ¢t \!
(pcg)marT =V- |:(8k)mac.v<Tmic> :|
+ hay (<Tr};1i(7>b - <Trtnic>t)
+ (pcw)fnac (<Tr}:1ic>b - <Tr[nir>t)
+ (64m)ac (1.1D)

where <Tf’m(,>h and <Tfni(,>t are the intrinsic average tempera-
ture of blood and tissue phases, respectively [also see
Eq. (2.14)]. ¢ is the volume fraction. v is the velocity. k and
kgis are the thermal conductivity tensor and dispersion ther-
mal conductivity tensor, respectively. & and a, are the inter-
facial heat transfer coefficient and specific surface area,
respectively. This model considers local thermal nonequili-
brium between the blood and the surrounding tissue, and
includes the effects of blood-tissue conduction, convection,
blood perfusion, and metabolic heat generation. The effect
of microscale vascular structure is not fully considered in
this model since a rigorous closure of the energy equations
was not provided. Note that in the blood-phase equation
(1.10), the macroscopic convection term (the second term on
the left side), thermal dispersion term (k ;-involved term on
the right side) and perfusion term (the last term on the right
side) all come from the averaging of the convection term on
microscopic energy equation for blood. As such, in the tis-
sue-phase equation (1.11), it seems that the perfusion term
(the third term on the right side) should not appear, just as
the other two do not.

Arterial-venous anastomosis, a direct connection
between an artery and a vein to bypass capillaries, occurs
normally in fingers, nose and lip for the functions like blood
flow rate adjustment and body temperature regulation.“s’46
To account for the countercurrent heat transfer between
closely spaced arteries and veins induced by arterial-venous
anastomoses, the two-equation model has also been extended
to a three-equation version by Nakayama and Kuwahara.**

By decoupling Eqgs. (1.10) and (1.11) to obtain the two
energy equations with <Tf’m‘,>h and <Tﬁm~c>t as the sole
unknown variable, respectively, we can find that both
<T,’,’".C>/7 and <Tr’m»c>[ are governed by DPL heat conduction
equations, although the heat conduction in blood and tissue
has been assumed to be Fourier-type at the microscale.*’ It
thus confirms that the DPL constitutive relation is more
proper for the heat flux density vector in developing macro-
scale bioheat models using the continuum approach. The
formulas of 7, and 77 are also available for these new DPL
heat conduction equations. Since the cross-coupling thermal
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dispersion is not considered in this model, the bioheat trans-
fer is always diffusion dominant without thermal waves.
Compared with the continuum models, the model based
on porous media theory offers the connection between
microscale and macroscale properties and is capable to accu-
rately describe the rich blood-tissue interaction. A rigorous
closure theory is nevertheless needed for materializing its
promising potential. In the following, we develop a closed
macroscale bioheat model with blood or tissue temperature
as the sole unknown variable, showing: (i) the DPL bioheat
transport at macroscale for both blood and tissue phases, (ii)
the sophisticated effects of the interfacial convective heat
transfer, the blood velocity, the blood perfusion and the met-
abolic heat generation on macroscale temperature fields in
both blood and tissue, and (iii) the possible thermal waves
and resonance predicted by the bioheat transfer equations.
Because of the significance of DPL heat conduction in bio-
heat problems, we subsequently present the solution struc-
ture theorems for mixed problems and Cauchy problems of
DPL heat conduction equations. Finally, we apply the solu-
tion structure theorems to study the bioheat transport in skin
tissue and during magnetic hyperthermia.

Il. AGENERAL BIOHEAT MODEL AT MACROSCALE

In developing the macroscale bioheat model by the po-
rous media approach, microscale field equations are first
averaged over a representative elementary volume (REV) to
obtain the macroscale field equations. Multiscale theorems
are used in the averaging process to convert integrals of gra-
dient, divergence, curl, and partial time derivatives of a func-
tion into some combination of gradient, divergence, curl, and
partial time derivatives of integrals of the function and inte-
grals over the boundary of the REV.*® The closure models
are then provided for the unclosed terms in macroscale field
equations that represent the microscale effect to form a
closed system.

A. Volume averaging
1. Microscale model

Neglect the gravitational effect and assume that blood is
incompressible and Newtonian. By the conservation of mass,
momentum and energy, and the Fourier’s law of heat con-

“— blood-saturated
porous media

J. Appl. Phys. 109, 104702 (2011)

duction, the microscale model for blood flow and heat con-
duction in the two phases read:

In the blood phase,
V.vh =0, 2.1)
b 8me¢- b b b b b 2 b
Pmic 7 + Pmic¥mic * vvmic - _vaic + 'umicv Vi
(2.2)
or’,.
(P ot + (PO)icVoie - Vo =V - (kpie Ve ) -
(2.3)
In the tissue phase,
aTrtni('
(pc)ini(rT =V (kiniCVT:niC) + q)inic' (24)
Boundary conditions at the blood-tissue interface Ay
b _ b
B.C.1 vy = Ve, (2.5)
B.C2T, =T (2.6)
B.C3.ny - k2, VT2, =mny -k VT +Q. (2.7

Here the subscript mic is used to indicate the microscale
properties. p is the pressure, and u the viscosity. @, is the
homogeneous thermal source which may come from the met-
abolic heat generation or the external heat supply like the
one used in hyperthermia. ny, is the outward-directed surface
normal vector from the b-phase toward the f-phase, and
n, = —ny, (Fig. 1). Q is the heterogeneous thermal source
relating to the mass transfer at blood-tissue interfaces due to
the blood perfusion. Assume that once the blood enters the
capillaries from arterioles, it immediately equilibrates ther-
mally with the tissue until it leaves the capillaries into ven-
ules. Q thus satisfies
Q- { Ny - (pc)}r)nivvzlic (Tr}:u‘c - Trtm‘c)7 when ny, - anic >0
0, whenny-v2, <0
(2.8)

2. Scaling-up by volume averaging

The system is assumed to be rigid so that V” and V' are
time-independent. By integrating Eqgs. (2.1)-(2.4) over the

FIG. 1. Blood-saturated porous media
and REV.
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volumes of blood (V?) or tissue (V') in the REV, we can
have the superficial average form of the conservative equa-
tions of mass, momentum, and energy,

(V-vb.) =0, (2.9)
v .

p}r:mc % + pzwc< nll( valt>

= _<fonic> <:umlcv2 rmc (210)
TP,

(p )mu( <6’;”C> + (pc)}r)na(< WII( VT}’}:HL>

= (V- (kpie Vi) 2.11)
NT!

() e < a’:”> = (V- (ke VThi)) +(Ph)s  (2.12)

where the notation ( ) indicates superficial average quantities
as

<lﬁ">:VRlEVJ yhav, (') = VRIEVwa[dV 2.13)

The intrinsic averages relate to the superficial averages by

1 1
<¢h>b _ WJVh Wde _ Sb_ <lp/7>)

mac

W) = ijv vav =) (2.14)

Continuity equation:
Applying the spatial averaging theorem to Eq. (2.9)
leads to

<v : mlc> ny - anich =0. (215)

1
Vo (Vie) + ey VREV Lh
The surface integral represents the volumetric rate of blood
bleeding off to the tissue phase through the vascular wall.
Since the net filtration of blood from the intravascular to the
extravascular regions is very small, the surface integral is
negligible so that

V- (vh.)=0. (2.16)

mlL

The superficial average velocity field is a preferred representa-

tion of the macroscale velocity field because it is solenoidal.*°

Energy equation:

Applying Eq. (2.1) and the spatial average theorem, the
second term in the left side of Eq. (2.11) can be written as

(pc)mac < mic VT}IZM >
1
= (pc)zzac (V <VmwTr}r)11( > + WJ Ny - thcTr};u( dA>
Ahr
2.17)

Decompose the microscale quantity into its intrinsic average
quantity and a spatial deviation as

Vb..:<vb._>b—|- T —<Tb > +Tb

nic mic nll( )% mic mic mic*

(2.18)
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Therefore, the term (v/, T, ) in Eq. (2.17) can be written as

b
<lecTr};11(> - << mlc> <TZM> +v mlc<Tri;uc>
+<Vlriu'('> mic + szc mic >

The second and third terms on the right side of Eq. (2.19) is
negligible®® so that it reduces to

<lecTr}:uc> = Sﬁzac< mt(‘> <Tr}:1w>b+<vmlcTr}:uc>

The surface integral in Eq. (2.17) can be approximated by
using Eq. (2.18)

(2.19)

(2.20)

mic” mic

1
J ny - v2. TP dA =
Ahz

VREV mic® mic

ny - v T’ dA.
VREV Lm 4

2.21)

For the right-side term in Eq. (2.11), it can be expanded by
using Eq. (2.14), Eq. (2.18), and the spatial average theorem

(V- (6 Vi)

mic mic
1
=V |: mac <8fnac'v<T£1iz:>h + VREVJ nthmu dA) :|
Apr

1 1
+WJ Ny, - kfm( V< mic > dA + VREVJ Ny - kf;u( vamc dA
Ahr

Apt

(2.22)

When the standard length scale constraints are valid
Wy, b, < Ry and Ry < L, where ¥;,/¢,,Ry, and L are the
microscale length scales of the b- and #-phases, the radius of
the REV and the system length scale, respectively; Fig. 1),
we can neglect the term VR%J’A ny kb V< mu>hdA since”’

1
WJ Ny - kfmcv< ml(> dA
Ahz

1
= {WJAM nhtdA} macv< mtc>
1 b b
= (J VidV — VJ 1dv) kma(V<TmK>
V Vh Vh

1
-V (—VREV JV 1dv) K (T
— V&, K V(TP N ~ 0.

Substituting Egs. (2.20)—(2.23) into Eq. (2.11), we obtain the
unclosed form of energy equation for h-phase
a1,
b ic
(PCE)ae =5,
—_—

accumulation

1
=V |: mac ( macv< mzc> VREVJ nbledeA>:|

bt

(2.23)

+ (pcs)}r:ulc<vzzi( > V<Tr1:u( >

convection

conduction
- 1

b ~

- (pc)macv : <Vz1ichm‘c> + VREV JA Ny, - k VTI?H( dA
dispersion z
interfacial flux
1

b

- (pc)macW JA Ny - Vmu Tmtch (2.24)
bt

blood perfusion
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The energy equation for #-phase can be analogously obtained

8<Trtnic>[
(Pee)mac =, =
—_——

accumulation

1
=V- |: mac ( macv< mzc> WJ nlhT:mch>:|
Apr
conduction
+ VREV JA/,, ntb kimcvrrimc dA + Fmac <(Dimc > Y
metabolic
interfacial flux thermal source
(2.25)
where
Thie = (Thie)' + T (2.26)

Momentum equation:

The momentum equation has a similar form with the
b-phase energy equation®’

0
(pg)zwu <Vamtu + (pg)i:?ac<Vz1i('>b'v<v?nic>b
—_————

accumulation

convection

b b 1 ~b
= “Enac v<pmu> - VREV J nbtpmich

Apr

pressure force

V- (M (0T V0)) | =PV - (i)

dispersion

viscous force

1
+ VREV J e 'umtc erm( dA, (2.27)
Apr
interfacial viscous force
where
b b \b | b
Pmic = <pmir:> + Pmic- (228)

The closed macroscale transport model requires the clo-
sure models for spatial deviation variables (v2., p?.., T?.,
and T' ). Readers are referred to Ref. 52 for the closure
details regarding v*.. and p® . for the case of homogeneous
porous media, which lead to the Forchheimer equation.
When Reynolds number of the blood flow is smaller than
one (such as the blood flow in small vessels), Darcy’s law

can be used as the macroscale momentum equation.***’

3. Energy equation closure

In order to obtain a closed system, closure models need
to be provided for 7, and Tfm in Egs. (2.24) and (2.25),
respectively. Apply the decompositions given by Egs. (2.18)
and (2.26) into Egs. (2.3) and (2.4), and then subtract the
results from Eqs. (2.24) and (2.25) with both sides divided

by ¢ and & respectively. We obtain

mac mac?

J. Appl. Phys. 109, 104702 (2011)

a'fh b b
(pc)mlc amu +(pc)m1c mic vTmzc (pc)mu mic V< mic >
——
accumulation
1
b b
=V (kmzc VTmzc) - 8— V- (VREV J nb’kmzc Tmz( dA)
‘mac Apt
non-local conduction
1 1
b b b
+ (pc)macv < mlchlL> - Sb—VREV J Ny - kmic‘
‘mac Apr

non-local convection

b
% VTP dA+(8) 7J n, Ve TP dA, (2.29)
bt

mic VREV mic™ mic
mac A

(polt e
—_————

mic al

accumulation

1 1
= v ( mzchrtmc) - 8r_v ’ <VREVJ nthkich:mr dA)
Apt

mac

non-local conduction

1 1
1/REV J ny, - k}t'm( VTrtnu dA.
mac 14 Apr

(2.30)
When the length scale restriction ¢, ¢, < L is satisfied, the
non-local conduction and non-local convection terms can be
neglected because™>

b
Emac

1 1
V. (‘/REVJ nh’kfchmlCdA> < v (kﬁ’ll( VT’}:"L)
Apy

(2.31)
! \Y% ! KT dA V- VT!
8[— ' W 4 WK, picd pic < (mlc mlc)
‘mac bt

(2.32)
(pc)}r}nacv <leCTi’}:H(‘> < pc)ma(‘ mic VTrliuc (2.33)

We can further neglect the accumulation terms in Egs. (2.29)
and (2.30) for a quasisteady closure. Therefore, the govern-

ing equations for Tb and T,’m reduce to

~ b
(pc)fmc Vinic VTII:H( (pc)mu Vmu V<T3m >

1 1
=V (k) VT).) — J ny - kb, VT, dA

‘mic mic VREV ‘mic mic
mac A

pC) 1 J
T’ dA, 2.34
+ ( & macvREv Ap for lec e ( )

1 1
0=V ( mic VTrtmc) - VREV JA g - kimr VTrtm(dA
”la( bt

(2.35)

Boundary conditions:

B.CATh, =T = ((Thi) = (Thie))sat A, (236)

mic mic mic

B.C.2 Ny - kﬁ)mc VT};HL =Ny - kﬁmc VTi’m( — Ny - kfmcv<Tm1L>
+ oy K V(T Y 4Q, at A

(2.37)
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Average condition:

< mzc> <Tr[m'(7>t = O (238)
Periodicity condition:
Tfmc( +£) mu‘( )7T;711C( +€) mlC( )7l: 17273'
(2.39)

Here, r is a position vector and ¢;(i = 1,2,3) represents the
lattice vectors. The periodicity condition is imposed because
the closure problem is normally solved only in some represen-
tative region that can be treated as a unit cell in a spatially
periodic model.>® The unit cell should contain enough infor-
mation regarding the microstructure of the biological tissues
in order to be representative of the real system. Specific anat-
omy like vascular countercurrent structure can also be re-
flected by properly constructing the unit cell. The average
condition in Eq. (2.38) is required to determine the surface
integrals in Egs. (2.34) and (2.35). These two-surface integrals
are related by, based on the flux boundary condition (2.37),

1
J ny, - k2. VTP, dA
Ahr

~ e | K VT @, Q40
where
Q) = Aibr L QdA. (2.41)

The Ay in Eq. (2.41) denotes the blood-tissue interfacial area
in VREV and A, indicates that Q is integrated over the arte-
riole-tissue interfaces since Q = 0 at venule-tissue interfaces
[Eq. (2.8)]. <Q>fn'ac gives rise to coupling at the macroscopic
level and can be modeled by

bt 1 L \b b t
<Q>mac_ ; (pcw)mac (<Tm1c> <Tmu> ) : (242)

We view V(T?, > V¢ m,c> <Tmlc>

mic
as the sources for spatial deviation temperatures so that

d(Q
< mzc> an 47>4r5a(

sz = sz( v<Tmlc> bfr:ln ’ V<Timc>
~ Smic (< mic > <Tmz( > ) Fiic <Q>Z:a(" (243)
TimL = bg:u : V<TZ11(> + bir[m : V<T:mc>
- Sinic( TZzi(> <Ti'mc> ) + rﬁnic<Q>}rZaz:' (244)
Here bi)n};( ’ bfr{zc ’ bi’f‘l’l(’ bZIIL’ mtc’ Sim( ’ ’fmc’ and ’ ¢ are the clo-

sure variables or the mapping variables that hnk the mlcro-
scale and macroscale. Substituting the expression of (Q)
given by Eq. (2.42) into Eqs. (2.43) and (2.44), we obtain

mac

Tir)uc = bZZC V<Tmlc> +bi)rflc v<Tmlc>

e ((Thi)” = (Thie)').

(2.45)

J. Appl. Phys. 109, 104702 (2011)

mlL = bf’l}l)l( ’ < nll(,> + bf’ftll( V<TWI1(>

- O-ml( <<Tmlz> <T§'nzc> ) ) (246)
where
b b
b _ b mlc (pcw)mac t nm (pcw)ma(‘
O-mic - Smic a ) am,‘c - Sml( a - .
v v
(2.47)

By substituting Egs. (2.45) and (2. 46) into the governing equa-
tions and boundary conditions for 7, and T’ . [Egs. (2.34)—

m mic

(2.39)], we obtain the following three closure problems:

Problem |
b~
(pc)micvlrjmc (pc)ml( mic Vbﬁﬁc
1
= k2. V" — ——cP in the b-phase,  (2.48)
ma(‘
i I2nib L ib
0=k, Vb, + C,.» in the r-phase, (2.49)
B.C.1 b?2 =Db?, ,at Ay, (2.50)
B.C2 Ny - kf;lch});Z( =y - kitmz vbi}ll;l( nb’kmzc7 at Abf'
(2.51)
Average:
(bf2)" =0, (b%.)" = 0. (2.52)
Periodicity:
b%(( +€) bzgc( )’biﬁl)lc( +£)_b;}1)u( )» i=1,23,
(2.53)
where
1
bb b bb
Conic = VREV JA Ny, - kmqumtch
bt
1
0Ny JA ny V0 b A, (2.54)
bt
1
b = VREVJ ny -k VbP dA. (2.55)
A/n
Problem Il
1
(pc)}r;icvzﬂc : Vb%c = kzurvzbzzc - },— Zflm in the b- phase
(2.56)
1
0 =k, Vbt +——clh., in the r-phase. (2.57)
Smac
B.C.1 b”.. =Db".  at Ay, (2.58)
B.C2 Ny - kfmc mefzz =y - kitnu Vbzm +nhlkmac’ at Abf'
(2.59)
Average:
<bfntlc> = 0 <bzm>t: 0 (260)
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Periodicity:

bfn’l(( +€) bl}':l’l(,( )vau(( +£)7b£'tuc( )7 i:]‘72737
(2.61)

where

1
c”’.,z—J ny, - k2. Vb dA
Abr

mic VREV mic mic

1
- (pc)szacmj Ny - lecbmrt( dA (262)
Ap
1
ot — VREVJ - kL Vb dA, (2.63)
Ah/

Problem Il

1
(pc)fmc Vonic VG 7kb vZ b *STG}), in the b-phase,

mic mic WII(
(2.64)
1
=K Vi + F—G’, in the #-phase. (2.65)
B.C.1 Umu Opic T 1, at Ay, (2.66)
b
B.C.2 Ny - kmu vO-ml( = Ny - kﬁnl(v ;mc M’ at Aht'
(2.67)
Average:
b
(a,.)" =0,{a!,.) =0. (2.68)
Periodicity:
I’ﬂl(,( +£) Wll( (r)7 n?l(,( +€) I’Hl( (r)’ l - 1?2?37
(2.69)
where
b 1
G" = VREV Ny, - kml(‘vo-mtch
Ahl
1
b
- (pc)macm JA Nyt - Ve GmudA (2.70)
bt
1
G = WJ ny, - k VamdA 2.71)
Ap

The three closure problems can be effectively resolved by
standard numerical schemes. Readers are referred to, for
example, Refs. 51 and 54 that solve some similar closure
problems for heat transfer in porous media, and Refs. 55 and
56 for heat conduction in nanofluids.

The closed energy equations for b- and -phases can be
obtained by substituting Eqs. (2.45) and (2.46) into Eqgs.
(2.24) and (2.25).

For the b-phase:

T\
W) | (et ()" - 918"
_ uhb . V<Tb > ubt . V<T[ >

mac mic mac mic

=V (K (T K V(L)

(PCE)

mac mic

() (1),

(2.72)

J. Appl. Phys. 109, 104702 (2011)

in which the dominant thermal dispersion tensor K”” and

mac
the coupling thermal dispersion tensor K” are given by

K )
Kfrﬁu = ( k)fna(l + Vgg:/J nbtbzzz dA — (pc)fnac<vz1icbfn};c>7
Apr
h (2.73)
k
Kl = gt | moblicdt = (o) (Tbli). 274)
bt

The two nontraditional convective transport terms in Eq.
(2.72) depend on the coefficients umac and umac

1
Upe = WJ ny - kb, Vb2 dA
Ahz
ksult b ~b b
R, 0,005 dA 4 (PC) e (VinicOmic)  (2.75)
1
a (pc)f”afmj L mtcbmé( dA
Apr
1
Upige = VREVJ Ny - kpyie Vo dA
Ahz
kfnac b b b
+yREY || Ny 0h, dA — (pC) o (Voiab. ) (2.76)
bt
1
o (pC)chWJ Ny - mtcbfntzch
Abr
For the ¢-phase:
8 Tr[nic '
(PCE) e ( = ) —u? .V<Tfjm u’ 'V<Tfmc>
= V ’ (Kif;a( V< m1L> +K££la( V<T:mc> )
G ((The) = (Thie)) + e (Pl @77)

in which the coupling thermal conductivity tensor K and

mac
the effective thermal conductivity tensor K’ are given by

K
K’ = VEE(VJ n,b. dA, (2.78)
Abr
1t k;n y It
Kmac = ( k)macI + VR](;,LV JA nthbmlch (279)
bt
The two velocitylike coefficients are given by
th 1 t th kinac
Wy = W N ny, - kmzc vb}'deA - VREV N ntbanlzLdA
bt bt
(2.80)
1 1 1 1t kit’nuc
Wae = W s ny, - kmu vbml( dA + VREV s nthaml( dA.
bt bt
(2.81)

B. Macroscale model for blood and tissue
temperatures

Rewrite Egs. (2.72) and (2.77) in their operator form

s e e

(2.82)

where
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A= e (G4 (V)7 ) ¥ - T (R 9) 4 G

J. Appl. Phys. 109, 104702 (2011)

D=y V-V (K"

te V)+G,  (2.86)

umac

ymar (pc‘g)ma( ’ ymau - (pcg)ma( (287)

We then obtain the uncoupled form for { nm) and (T" . ) by
multiplying the inverse matrix of [A B] with both sides of
Eq. (2.82):

(Voie)” VAT’

ot
(2.83)
B = Woac V-V (K}rjlta( : v) - Gb7 (284)
C= mac V=V (Kisac ! V) - Gt7 (285)
!
a<T;m( >i (ybyt)ma(r o <Trlmc>i y}r:mcG,
ot Gb?ﬁnac + thi)nac Ot Gbyinac + Gy,
1
G+ Gy (O e
!
T e+ Gl WGV (e + Ko
1 0
N G e + G Tnac
|
e e

Ko V][V (
9 bb

ymac

V) (W )]+ G (W) - V) o+ (W V) (T

mac

mic mic

K, +K0,) V] + GV - [(KE, +KY,) VT,

0

[V (Kl )]+ gy 7 (K2 9)) T8 )

V)] = [V (K5

mac

V)V - (K- V)]

mac

b a 11 ,‘
+ |:’ymar§ (uma(‘ ’ v) + /mac ot (umac : v ] - ') 'V mac 8t (<Vm1(‘ )
(u,

+ Hnae (Vi) V) [V - (Ko
— (Wl V) (whe - V)] = { (u)

- (ufnta(: ' V) [v (Kza( ' V)] - (uisa(: ! v) [

1

V)V (

+Gb t +G'y b H’ mar<(D:'11€>t’

ymac mac

where the index i can take b or 7. H' takes the form

H' = umac V+V- (K, V)+G, (2.89)
H, = mac |:8[ (<th(> : v>:| - “Zz]:u- : v
-V (K. -V)+G. (2.90)

When the system is isotropic and the physical properties of
the two phases are constant, it reduces to

6<T;mc>' a2< mtc> 1
ot K ot " Ghyﬁna( + GtVﬁmc

1 G (Vi) - V=G (W - V) + (0 - V)]

(e 9) + (e ) J )

- OCA<T:711(>i
d N OF(r,1)]"
e (A( mu}) k—e[F(r,t)—i-rq 5 Lac,
(2.91)
where
bt
") mae 2.92)

T, =
q bt tnh 0
G ymac + G Vmac

)]+ (<vm,c> V) (e )~ [l V) (0 V)

nac V)] + (uzim V[V (K- V)]

(Kfntac' )]} <m1c>

(2.88)
\ bktt + 1 tkbh
op = UK TR (293)
ke
ke ke
. — 2.94
* pc Ghyinac + nylrimc ’ ( )
k - G[ (kfnbaz kfn[az) + Gb (kﬁfl)m k;r[uu) (295)
OF (r,1)]"
F
|: (r, t) M ot :|ma('
bt 1.th bb .1t 2 b d tt
(kma( kmac - kmaz kmuc)A + Vmaca (umac ’ V)
0 0 b
e g )] = 0 ()
 nackinac AV V) 4 e (V) - ) (W - V)
- [(ufn};c ’ v) (uiptuu : V) (ui}ntac ’ v)(“;ﬁac ’ v)]
[k}t'i{ta(A( zlbuc : V) + kfnbaLA( ch ' v) k;};a(A( zltuc : V)
A V>1}<Tim[> B (@)
(2.96)
W=y V+iE A+G (2.97)
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0 b appearance of the nontraditional convective terms

r_ b |9 b\ _bb 7 _ pbb b 0 adit 1ve .
= o gy (609 il - paa T T wh V(T ulh V(T and
(2.98) w! - V(T,. ) in Egs. (2.88) and (2.91). The velocitylike

This is a dual-phase-lagging heat conduction equation
with 7, and 77 as the phase lags of the heat flux and the
temperature gradient, respectively.'®?**® Here, F (r,?) is the
volumetric heat source. k., pc, and o are the effective thermal
conductivity, volumetric heat capacity, and diffusivity, respec-
tively. They depend not only on the thermal and physical
properties of the two phases but also on the microstructure in
biological tissues. Although the heat conduction in blood and
tissue is assumed to be Fourier-type at the microscale
[Egs. (2.3) and (2.4)], it is a DPL-type at the macroscale.

It is interesting to note that the nontraditional convection
terms —u?? - V(T2 " —u - V(1! )" and —u? - V(T?,

mic mic ic

—u’. V(ij.cy in Egs. (2.72) and (2.77) do lead to the
|

terms also appear in the source terms of Egs. (2.88) and
(2.91). Furthermore, the heat source sj,m((l)ﬁmcy (which may
come from the metabolic reaction in the tissue or external
heat supply) and the convective term (v%, )" V(Ti. )’
appear in both energy equations [Egs. (2.88) and (2.91)].
Therefore, they are with their macroscale manifestation in
both blood and tissue. The blood-tissue interaction generates
a very rich way that the blood-tissue interfacial convective
heat transfer, the blood velocity, the blood perfusion and the
thermal source in tissue affect (7%, )" and (T%,)'
[Egs. (2.91) and (2.96)]. It would be very difficult to model
these rich interactions by the mixture theory of continuum
mechanics.

Consider

(yfnac)zGIthac + (Vina(r)thkglec B Vlriwcyinac (thigac + Gtkzlta(r)
Tq yfnac‘yinacké’ .

[

(2.99)

It could be largerz, equal, or smallgr than 1 depending on the
Sign Of (ana(') Grk}[';{la(' + (’y;na(?) Gbklrilbac - ylrimc’yinac (Gbk}['ga('
+G'k% ). By the condition for the existence of thermal
waves that requires Tr / T, < 1,'37 we may have thermal
waves in bioheat transport when

2 2
(yzzac) lell + (y;nac) thbh _yﬁzan'yirzac' (th{h +lebf

mac mac mac mac)

2
= (yﬁwc \% Gtkztac' - Vﬁnac \/ Gbkfnéu)
=+ ana(ry;nac <2 \/ GbGtkzl,;ckxmc - Gbkiﬁac - Gtkfrlta(f) <0.

(2.100)

A necessary (but not sufficient) condition for Eq. (2.100) is
Gk + Gkl > 2\/GPG'kPb k' ... When the coupling
thermal conductivity term k%', and k™ = are excluded so that
Tr / 7, is always larger than 1, thermal waves would not
appear. Moreover, there is a time-dependent source term
F(r, 1) in the DPL macroscale bioheat equations [Egs. (2.88)
and (2.91)]. Therefore, the resonance can also occur. Note
also that 77, 7, and the ratio / 74 are all G’— and G'— de-
pendent. This phenomenon is peculiar to bio-tissues because
of the blood perfusion process.

The rigorously-developed and closed macroscale bio-
heat model shows: (i) the DPL bioheat transport at macro-
scale for both blood and tissue phases, and (ii) the
sophisticated effects of the interfacial convective heat trans-
fer, the blood velocity, the perfusion and the metabolic heat
generation on macroscale temperature fields in blood and tis-
sues. Specially, the blood perfusion leads to a thermal source
in the flux boundary condition and a surface integral term in
the governing equation for blood temperature field. The
resulted macroscale model has thus some distinctive features
from that for impermeable-interface-systems,”®° such as the

appearance of the nontraditional convective terms in the
uncoupled DPL equations for both blood and tissue phases.

The DPL heat transport differs from the classical Fourier
heat transport mainly on its existence of thermal waves and
possible resonance. Such waves and resonance come from
the blood-tissue coupled conduction and will vary features of
heat transport significantly. In the next part, we present a
general methodology for solving the mixed problems and the
Cauchy problems of DPL heat-conduction equations.

lll. SOLUTION FOR DPL BIOHEAT EQUATIONS

We investigate the solutions of mixed initial-boundary
value problems and Cauchy problems of DPL bioheat equa-
tions in Secs. IIT A and III B, respectively, by following the
approach developed by Wang, Zhou, and Wei.'® For mixed
problems, solution structure theorems are given and proved
for Cartesian, polar, cylindrical, and spherical coordinates in
Sec. III A 1 (Theorems 1, 2 and 1), Sec. III A 2 (Theorems 3
and 4), Sec. III A 3 (Theorems 5 and 6), and Sec. III A 4
(Theorems 7 and 8), respectively. The method of separation
of variables is also illustrated in each coordinate. For Cauchy
problems, solution structure Theorems 9 and 10 are given
and proved, with a brief discussion on the integral transfor-
mation and perturbation method.

A. Solution structure theorems for mixed problems of
DPL equations

The temperature field of mixed initial-boundary value
problems in DPL heat conduction comes from the contribu-
tions of the initial temperature distribution, initial rate of
temperature change, boundary temperature distribution and
source term. Since the effect of the boundary distribution can
be transformed to the effect of source term through the ho-
mogenization of boundary conditions, we only study the
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solution structure of problems under linear homogeneous
boundary conditions

101 PT )0 o
Tt = AT+ B AT 4 (M 1); Q% (0, +00)
oT
L(1,.5=)| =0
(1) —o0.+)
oT

3.1)

where 19, A, and B are constants. f(M, 1), ¢(M), and (M)
are known functions. A is the Laplacian. L(T, 0T /0n)|,q
= 0 denotes the linear homogeneous boundary conditions of
all three types (Dirichlet, Neumann, and Robin boundary
conditions), with 0T /On standing for the normal derivative
on the boundary 0Q. For one-, two-, and three-dimensional
problems, there are 9, 81, and 729 combinations of linear ho-
mogeneous boundary conditions, respectively. When
T = T(M,t) stands for the temperature at spatial point M (in
the space domain Q) and time instant ¢, the equation
describes a DPL heat conduction with 9 = 7, A2 =y / Tgs
and B? = oty /1.

According to the principle of superposition, the solution
of problem (3.1) is the summation of solutions of the follow-
ing three problems:
10T 0°T

d
— Z = A’AT+B>=AT; Qx(0
t08t+6t2 + ot x (0, +00)
oQ

or
L(r.5)
or

T(M,0) =0, - (M,0) =y(M); €,

= 0; (0, +00) (3.2)

10T O°T 0
—— 4 —— =A’AT+B>=AT: Q
70 Ot + or? + ot x (0, 400)

or
L(r.5,)
or

T(M,O):(p(M), E(Mv()):O; Q,

= 0; (0, +00)
oQ

(3.3)

10T O°T 0

Dt =A’AT+ B> AT +f(M,0); Q

o tor +B 5 AT +f(M,1); Qx(0,+00)
oQ

or
L(r.5:)
or

T(M,0)=0, S-(M,0)=0; Q.

=0;(0,+00)

(3.4)

The solution structure theorems relate the solution of (3.2)
with those of (3.3) and (3.4), and thus considerably simplify
the development of solutions of DPL heat conduction equa-
tions by only solving the problem regarding the -contribu-
tion. In the following, we first discuss the solution of the
y-contribution problem (3.2) for the sake of completeness, and
then give and prove the solution structure theorems for Carte-
sian, polar, cylindrical and spherical coordinates, respectively.

J. Appl. Phys. 109, 104702 (2011)

1. Cartesian coordinates

We find the solution of (3.2) by using the method of sep-
aration of variables, for one-, two-, and three-dimensional
cases successively.

For one-dimensional case, the problem (3.2) becomes

191 T  ,0°T _, O°T

wor tar =AM gt B gaer (00) X (0400)
oT oT

—b1a(0,l)+k1T(O,I):O,an(ll,t)—szT(ll,t):0

1(6,0)=0, 07 (5.0) = Y.

(3.5)

where b; and k; (i = 1,2) are non-negative real constants and
b; +k; > 0(i =1,2). Consider the nontrivial solution of
(3.5) with the form of

T(x,1) = T()X(x),

where T'(7) and X(x) are functions to be determined of the
only variables present. Substituting this into the Eq. (3.5)
yields

1

—T'()X(x) + T ()X (x) = A>T (0)X" (x) + BT (1) X" (x),

To
where the single and double primes (' and ') denote the first-
and second-order derivatives, respectively, with respect to
the only variable present. By separation of variables, we
have

LU0 +T"(0)  x'(x)
A2L(f) + BT (r)

X@ "

where — /1 is the separation constant. The separation equation
for the temporal part I'(¢) is thus

(1) + (% + ABZ> I'(t) + AT (£) = 0, (3.6)

and the homogeneous system for the spatial part X (x) is

X"(x)+ X (x) =0 37
{ —bi1X'(0) + k1X(0) = 0,b2X" (1)) + kaX () =0 ©-7
The problem (3.7) is called an eigenvalue problem because it
has solutions only for certain values of the separation con-
stant A = A4,(n =1,2,3,...), which are called the eigenval-
ues. The corresponding solutions X,(x) are called the
eigenfunctions of the problem.

The eigenvalue problem (3.7) is a general form encom-
passing nine problems corresponding to nine combinations
of boundary conditions. As an example to illustrate the deter-
mination of 1 and X(x), we consider the case of all nonzero
bl, kl, bz, and kz

X"(x)+1X(x) =0
X'(0) = mX(0) = 0,X'(h) + hoX(l) =0
I = k1 /b1, ho—ky /by,

(3.8)
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If =0, its general solution is X(x) = ¢;x + ¢;. Applying
the boundary conditions yields

1 — h162 =0
c1(1 4 haly) + hapea = 0.

1 _
1+l h #0.
We thus obtain the trivial solution X(x) = 0. Therefore, 1
cannot be zero.

If 2 <0, the general solution of the equation in (3.8)
reads

Its solution is ¢; = ¢; = 0, since A = ‘

X(x) = ¢y exp(—ax) + ¢, exp(ax),

where > = —/ and a > 0. Applying the boundary condi-
tions leads to
{ —acy +acy =0
—aexp(—aly) + aexp(al;) = 0.
Its solution is still ¢; = ¢, = 0. We thus again obtain the
trivial solution X(x) = 0. Therefore, the eigenvalues of (3.8)
must be positive.

For positive 1 = b? > 0, the general solution of the
equation in (3.8) reads

X(x) = ¢y cosbx + ¢; sin bx.
Applying the boundary conditions yields

bcy — hyey =0, orca = hicy /b
—c1bsinbly + c¢ybcos bl + hycy cosbly + hycy sinbly = 0.
Either ¢; or ¢, cannot be zero to have a nontrivial solution.

Its solution is, by noting that s, and %, are physically posi-
tive values,

1 hihy 1 hyhy 2
h— — bl; — .
hy + hy b (1 + o)1, bl

cothl, =

Let

B I hihal2
f(x) = cotx — eSS (x— . > 3.9)

bl thus represents the zero points of f(x). Since f(x) is an
odd function and 1 = b%, we wish to find the positive zero
points of f(x) only. Letting y, be the n-th positive zero point
of f(x), we have eigenvalues

2
Iy = b2 = (’l‘—) . on=1,23,...
1

The corresponding eigenfunctions can be written as

ad] cos'ui+31 o/l

I 0 I

2
(X
1 Hut
+ (11h1> sm(l1 +¢n),

where tan ¢, = =1 h] .

X, (x) =

(3.10)

J. Appl. Phys. 109, 104702 (2011)

To summarize, we have eigenvalues 2, = (u,//;)*, with
W, being the positive zero points of f(x) in Eq. (3.9); eigen-
functions X, (x) = sin(w,x/l + ¢,), with tan¢, = u,/
({/1h1). Normal square of eigenfunction set is

2 h :un
Ko@) = [ sind (554 9, )a
0
Lo"
My Jo ll
Lot
=21 [1 —co SZ(
Hn Jo 2

)
L) L)
|

(3.11)

Since the two characteristic roots of (3.6) are

1 1 5 1 )\ )
ra==|—|—+ 4B |2/ | —+4B>| —4L,A
2 To To

= On iﬂni,

where
oy = —% <T_10 —+ ;LnBz>
] 2
B, =11/44,42 — (%[, v l,,Bz> .

The solution of (3.6) reads

(3.12)

I (2) = e*(a, cos B,t + bysinf,t).

Thus the solution of (3.5) has the form of

T(x,1) =

Z 6“”’(@7; cos ﬁnt + bns‘i_nﬂnt) sin ('ulnx + ¢”> ’
1

n=1

(3.13)

where a, and b, are both constants to be determined. sinf3,
is defined by

inf 1 — {sinﬁnt, B, #0
1, f,=0.

Applying the initial condition T(x,0) =0 yields a, = 0.

Applying the initial condition 9T /9#(x,0) = y(x), b, can be
determined by

> bupysin( 0, ) = v
n=1

so that
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TABLE II. Eigenvalues, eigenfunctions, and normal square of eigenfunctions for nine combinations of boundary conditions.

x=0 x=1 Eigenvalues Eigenfunctions Normal square M,, Notes
1) X=0 (@)2 . mmx ! m=1,2
[ 2
HX=0 X' =0 @2m+ 1)r]? Sin(2m+1)7rx ! m=0,1,
{ 21 } 21 2
3) X +mhX=0 (,u_m>2 sin Hm® 1 { sin2u,, w,(m=1,2,...)are
hy >0 i l 2\ 2, positive zero-points of
f(x) = tanx + -
4) X=0 2m+ 1)n 2 COS(2m+1)m‘ ! m=0,1,...
2/ 21 2
5X = X =0 (@)2 cos ™ Ll m=0,1,
l ! )
6) X +mhX=0 (@)2 cos Hm* l | sin 241, w,(m=1,2,...)are
hy >0 ! / 2 + 244, positive zero- points of
g(x) = cotx — -
7) X=0 (lu_m>2 Sin(ﬁ/\"F(f)m) i-l 7Sin.um Hp(m=1,2,...) are
l l 2| . positive zero-points of
tan ¢, = Lal} 1 fx) = tanx + -
Ihy ) Cos(lum + 2(pm)
X —mX=0 X =0 (@)2 sin(’u—mx + (Pm> L[, sinp, w,(m=1,2,...)are
h >0 i l 2| . positive zero- points of
tan ¢, = Em | fx) = cotx — g
Iy ) COS(Hm + 2(pm)
9) X +hhX=0 (,u_m>2 MH(@XJHPM) 171 _sinp, w,(m=1,2,...)are
hy >0 l 2 . positive zero-points of
tan gy = - ' £x) = ot —
X) =cotxy — ————
! - cos(thy, +2¢,,) I(hy + hy)

2
~<x—' h\{llg)

where f§ is defined by

p

—n

_{ﬁn,ﬁﬂéo
LB, =0

N, is the normal square of {sin (“,Lf + <i5n) }, given by Eq.
(3.11).
Finally, we have the solution of (3.5)

o0
/) = Z_; bye®'sinf,  sin (“ll" n qbn)

L 1 ¥
by :Nnﬁn Jo W(x )sm< I + (jb,,)dx.

(3.14)

Jns X, (x), and N,, of the other eight combinations of bound-
ary conditions can also be obtained using a similar approach.
The results for all nine combinations are listed in Table II.

T(x,t) = Wy(x,t) given by (3.14) actually enjoys a very
elegant structure. We may use this structure and Table II to
write out Wy (x,7) directly. Let 4,, X,(x), and N, be the
eigenvalues, eigenfunctions, and normal square of eigen-
functions from Table II based on given boundary conditions.
The structure of Wy, (x, 1) is thus

=D buesing, - X, (x)

| (3.15)

N

[
by = J V()X (),
0

where >, denotes either >~ or >, depending on the
boundary COIIdlthIlS o, and f, are given by Eq. (3.12). If

=(1/7+ /1,132) — 4J,A% > 0 so that f, is purely imagi-
nary for some n, we can change sinf,t into
(¢! — e717) /(2i). The general term of the series solution
decays very quickly toward zero for all cases of
A >0, =0,and < 0, which facilitates its applications of
taking only the first few terms.

Some important properties of eigenvalue problems
include, for example: (i) all eigenvalues are non-negative
and real-valued for all combinations of boundary conditions;
a vanished eigenvalue appears only when X'(0) = X'(/;)
= 0; (ii) eigenvalues form a sequence of numbers which
monotonically increases toward infinity, whatever the
boundary conditions, ie., 0 <A </, <--- < <
limy_.o A = oo; (iii) all elgenfunctlon sets {X (x )} are or-
thogonal in [0, /], i.e., (X,,Xn) fo x)dx =0
n # m; (iv) any function f(x) € L*[a,b] can be expanded
into a generalized Fourier series by an eigenfunction set,
ie.,

= Z cnXn(x)

1
Ny

b

[ s, = [ xcoas,

a a

Cn =

where /N, is called the normal of {X,(x)} and serves as the
measure of function size. Therefore, {X,(x)} forms a
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complete and orthogonal set in [a, b] and limpy,_o

J. Appl. Phys. 109, 104702 (2011)

Similarly for two-dimensional case, problem (3.2)

2 becomes
\/f fFlx)=>2° 1 X (x)] dx = 0.
|
10T 0T o*T  O*T , 0 (PT O°T
() + B D x (0
o or (8x2+3y2>+ &(aﬁaz) X (0, +00)
oT
L(T,_> 0 (3.16)
on/|ap
oT
T(X,y,O):O, E(xvyao):lp(xvy)v
[
where D is the rectangular domain:0 < x < [;,0 < y < l; 0D 171
denotes its boundary. Its solution Wy, (x,y, t) has the form of L = — 2 L— + (A + /lm)Bz] ,
0

W‘// X ya Zb e%m Slnﬁnm 'l( ) m( )
n,m
1 (3.17)
bun = —H X, )X, ()Y, (y)dxdy,
NoNuB_ W (%, )X ()Y (y)dxdy
D
where 37 is a double summation and denotes »° %, _,

~ ;
Zn:O,m:O’ Zn:l,m:()’ or Zn:O,m:O depending on the given
boundary conditions in the x- and y-directions. o, and f,,,
are

18T+62 _ 2 82T+@+ﬂ
0 Ot Of ox2  Oyr 0z
L(T, @) -

N/ oo
163,200 =0, 9 (6.3,2,0)

where Q is the cubic domain: 0 <x <l,0<y<Db,0
< z < [3. 0Q denotes its boundary. Its solution Wy, (x,y,z,1)

reads
W‘// ()C7y, Z, t) = Z bnmkeanmk[Siinﬁnmkt . Xn (x)Ym(y)Zk(z)
n,m.k
1
bnm INENVEENE IS Xn Ym Z dxdyd ’
= NN mwx 32X, (3) V() 242y

(3.19)

where )" . is a triple summation and has eight possibil-
ities depending on the given boundary conditions in the x-,

y-, and z-directions. o, and f3,,,, are given by

11
Opmk = — = |:_ + (ln + lm + }k)BZ:| s
2 T0

! , L, ]’
ﬁnmk = 5 \/4(}% + )vm + /Lk)Az - |:1_ + (/“n + /Im + /bk)BZ:| .
0

Dty A s X (%), Yin(0), Zi(2)y Ny Ny, and Ny are the eigen-
values, eigenfunctions, and normal squares of eigenfunctions
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ﬁnm =3 \/4U~n + /lm)Az — |:— + (;Ln + )»m)32:| .
2 To

Jn> Xu(x), and N,, are the eigenvalues, eigenfunctions, and
normal square of eigenfunctions, respectively, in the x-direc-
tion. A, Y,,(y), and N,, are the eigenvalues, eigenfunctions,
and normal square of eigenfunctions, respectively, in the y-
direction. They can be obtained directly from Table II based
on the corresponding boundary conditions.

For three-dimensional cases, problem (3.2) becomes

, 0 (PT T 0T
B? ( +=+ )Qx( 00)

A

(3.18)

:lp(xa%Z)v

in the three directions, respectively. They can be obtained
from Table II based on the corresponding boundary condi-
tions. Note that we can also use other methods, such as Fou-
rier expansion, to obtain the same results.

Now we give Theorems 1 and 2 which relate the solu-
tion of the y— contribution problem (3.2) with the solutions
of ¢ — contribution problem (3.3) and f— contribution prob-
lem (3.4), respectively, for Cartesian coordinates.

Theorem 1. Let W, (M, t) denote the solution of (3.2).
The solution of (3.3) can be written as

T(M,t) = (% + gt) W, (M,t) +B*W,,(M,t),  (3.20)

where

Dty one-dimensional (1D) case
A=2X A+ 2, two-dimensional (2D) case

Jn + 2m + A, three-dimensional (3D) case,
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An» 2m» and J; are the eigenvalues corresponding to the eigen-
value problems in the x-, y- and z-directions, respectively.

Proof. Again starting from one-dimensional cases, we
need to prove that the solution of

Lor ot L,oT , T
wor tar =N gt B pae (0h)x(0,400)
L(n?i) —o

on =01,

T(x,0) = o(x), %(x, 0)=0

3.21)
is
1 0 )
T(x,t)=—+ py Wo(x,t) + B°W),,(x,1), (3.22)

To

where W, and W, , are both with the form of Eq. (3.15) but
replacing ¥/ (x) with ¢(x) and 4,¢(x), respectively, which has
been obtained by using the method of separation of variables.
By the same method, problem (3.21) has the solution of

T(x,t) = e (cycos Bt + dysinf,0)X,(x).  (3.23)

Thus,

oT ” )
o = zﬂ: e[y (¢ cos Bt + dysinf,1)

+ (—cuPysin Bt +dyf cos B,1)]Xn(x).

Applying the two initial condition leads to

oty
p

Zn

Cnoty +dyff, = 0,01 dy = ——=cy,

J. Appl. Phys. 109, 104702 (2011)

where N, is the normal square of {X,,(x)}.
We need to prove that the solutions given by (3.22) and
(3.23) are the same. By Eq. (3.15), we have

8 * Ot s
EW“D(X’ ) = ;bne (anmﬁnt + B, cos ﬁnt)Xn(x)

y I Cn
b= g L o () =

or

9 _ ot [ In
5W‘P(x’ t) = ;e (Cn cos fi,t + [ Cnmﬁnt>xn(x)

Zn

= Z ea"t(Cn COS ﬂﬂ[ - dnSi_nﬁn[)X" (X)
Also by Eq. (3.15),
1 2
‘L_—W(/7 (x, l) +B W/l,lrp(xa t)
0
1
=57 (B )b singr X,
w \T0
oy )
- Z 72_Cne%t%ﬁnt X (X)
n En
= Z 2d,e™"'sinfs, 1 - X, (x).

Therefore, by adding OW,(x,7)/0t and (1/19)W,(x,1)
+B*W,, ,(x, 1), the solution given by (3.22) is indeed equal
to that given by (3.23).

Similarly, for two-dimensional cases, the solution of the
¢(x,y) — contribution problem

1or T o*T T o (°T 0T
e =AY S (== +=—=);Dx (0
0o o (8x2 * ay2> o1 <8x2 i 8y2>’ X (0, +00)
L(T,g> =0 (3.24)
on) |op
oT
T(x,y,O)Z(p(x,y), E()@%O):O
can be obtained by separation of variables as
T('x7 y7 t) = Z ea”’”f(cnm Ccos ﬂnmt + dVU’HSi_ann'lt)Xl'[ ('x) Yi’ﬂ (y)
1
m = NN @ (%, )X ()Y, (y)dxdy (3.25)
D
anm
dpm = — 2 Cums
B

—nm
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104702-16  J. Fanand L. Wang J. Appl. Phys. 109, 104702 (2011)

where N, and N,, are the normal squares of {X,(x)} and {Y,,(y)}.
By Eq. (3.17), we have

1030 = 3 (i 4, 008t X))

by = ;” @, y) X, (%)Y (y)dxdy =

N"Nmﬁnm

or

0
—W,(x,y, " | ¢,m COS
8[ P y Z ( ﬁ nm ﬂ

Zm

C'l'ﬂSlnﬁnm )X )Ym (y) = Z eanmt(cnm Ccos ﬁnmt - dnmSi_nﬁnmt)Xn (X)Ym (y) .

nm

Also,

1 1 s « .
?OW(/, (x,y,1) + BZW(JV,,-&-im)(p(xa)’a t) = Z [‘C + (20 + )nm)32:| hnmeanmt@ﬂnmt “Xn (%)Y (y)

nm

o . .
= 25" Cane™'sinft - X ()Y () = Y el 'sinft - X ()Y (3)-
n,m

n.m ﬁnm

By adding OW,,(x,y,t)/0t and (1/19)W,(x,y,1) + B W5, +in)e (X, ¥,1), we can prove the solution given by Theorem 1 is the
same with that given by (3.25).
For three-dimensional cases, the ¢(x,y,z) — contribution problem becomes
We may obtain its solution directly by separation of variables
1 aT o*T L[0T O7T O°T , 0 (PT O°T 0T o
w0l or <8x2+8y2+822> o (32+8y +az> X (0, +c0)

L(T, @) =0 (3.26)
on

0Q
oT
T(xayazao):¢(xayﬂz)7 E(xayazao)zo'

We may obtain its solution directly by separation of variables

T()C, }’7 Z, t) = Z eanmkt(cﬂmk Cos ﬁnmkt + dnmkSi_nﬂnmkl)X”l ('X)Ym (y)Zk (Z)
n,mk
1
= sy ||| 960 DX 0120t G.27)
Q
dnmk = - M Crmics
ﬁnmk

where N, N,,, and Ny are the normal squares of {X,,(x)}, {Y,,(v)}, and {Z;(z)}, respectively. By substituting W, (x, y, z) based
on Eq. (3.19) into W, /0t, we have

nmk

a OC

o Wolw.y,2,1) = n%k:m (oznmksmﬁnmkt+ﬁ cos ﬁnmkt)X ()Y (y)Zi (2)
1 Cnmk

S — X, ()Y ()24 (2)dxydz =

ok = NnNmengﬂ*"@’y’Z) (T )2 e =

or

0
5 W(P (.X, ¥,z I) = Z e%”m“ (cnmk cos ﬁnmkl + Cnmksulﬂnmk[) X (X) Ym (y)Zk (Z)

n,mk

ﬁ

Zm

= Z ™ (Crmi €08 Bict — A SINP,) X (X) Y (v) Zie(2)

n,mk
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and

1 2

r_OW‘p<x’y’Z’ 1)+ B Wi ti0)0(X: ¥, 2,1)

= Z|: }” + )” + /L/») 2 b:;mkeamkISi—nﬁ”m}(t
n,mk
X (%)Y (9)Zi(2)

O nmk Sy b ®

= Z —2 = Cpmi€ nm‘tmﬁnmkl‘ : Xn(x)Ym(y)Zk(Z)
n,mk Enmk

= 3 2 sinf - X (1) () Ze(2):
n,mk

It is thus easy to prove that (1/t9+ 9/0t)W,(x,y,z,1)
+BZW( intin+ia)o (X, Y, 2, ) gives the same solution as that in
(3.27). Therefore, we have successively proved Theorem 1
for 1D, 2D, and 3D cases in Cartesian coordinates.

Theorem 2

Let Wy (M, 1) denote the solution of (3.2). The solution
of (3.4) can be written as

J. Appl. Phys. 109, 104702 (2011)

t
T(Ma t) = J W]‘}(M,tf‘c)drv (3.28)
0

where f; = f(M, 7).

Proof. We need to prove that the solution given by Eq.
(3.28) satisfies the equation, the boundary conditions and the
initial conditions in problem (3.4). By the definition of

Wy (M,t — 1), we have
LW, W, , 0
— T —A°A —B"—AW; =0
10 Ot T on or? W o
oW,
L(Wﬁ , fT) =0
on )y
0
Wr(M,t—1)|_ =0, aw,r(M 0 =f(M,1).
=1
(3.29)

After substituting Eq. (3.28) into the equation of (3.4) and
applying the equation in (3.29), we obtain

1ar T 0 10 o[
— A’AT — B> — AT_——J - J M, t—
wor T or o wan ), VMt = ayde+ 55 | Wit = )de
t t
—AZAJ Wﬁ(M,t—r)dr—BZ%AJ W.(M,t —t)dx
0
_ 17 ’BVi/ﬂ(M,t ) ’aszf(MJ—v:) anT(M,l‘—‘L')
- JO AT+ W, (M, t — )|H] + L oF dt + 5 _
t a t
—AZJ AWfI(M,t—‘c)dr—Bz—J AWy (M, t — 1)dt
0 ot Jo
_1 [8Wﬁ(M,l—T) ’82Wfr(M,t—r)
—‘C—OUO 6[ dT 8[2 dT+f(M,t)
t 13 8
—A2J AWy, (Mt — t)dt — B? U &AWfI(M,t—r)dt—i—AWfr(M,t—T)‘T_t}
0 0
- ! 1(9WfI(M,t—‘E) aZWfI(M,l‘—T) 2 28
_JO (% e R ON A UN S 5AWfT(M,t—r))dr

+f(M7t) :f(M’t)

in which Wy (M,r— ’7 =0 and OWp (M r—1 /Bt}
= f(M, t) have been used Therefore, T = [j Wy, (M, — r)dr
given by (3.28) satisfies the equation in (3.4).

By substituting Eq. (3.28) into the boundary conditions
of (3.4) and applying the boundary conditions of (3.29), we
have

or
L7
( ’5'1)

|
A/~

t
L J Wfr(M,tfr)d‘c,gJ Wfr(M,t‘c)d‘c)
on 0

0Q 0Q

"o
M,t—f)dt,JO%WfI (M,t—r)d‘c)

oQ

dt=0.

t
- L(WM,: 0. L, (a1 r))
8 0Q
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Therefore, T = f(; Wy (M,t — t)dt given by (3.28) satisfies
the boundary conditions in (3.4). Also,

1
J WfI(Mﬂ‘— ‘L')d‘[
0

t=0

8 t
— M,t—1)d
ARAUREET

o Jt anr(M,l‘— ‘L')
o ot

dt + Wy (M =0.

t=0

- r)lr_,]

Equation (3.28) also satisfies the initial conditions in (3.4).
We have thus successfully proved Theorem 2 for Cartesian
coordinates.
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As a summary, the solution of

11 T , , 0
T061+W A*AT +B 5AT+f(M,t), Qx (0,+00)
oT
(1) |00
or
T(M,O)Z(p(M), E(MvO):w(M); Q
(3.30)

is

T(M,1) = Wy (M, 1) + (%

o)
+ 5) W(/, (M7 l‘)
t
+ B*W,, (M, 1) + L Wi (M, t—1)de,  (3.31)

where Q denotes the domain of

0<x<ly, one-dimensional case
O0<x<,0<y <y,

0<x<1,0<y<h,0<z<ls,

two-dimensional case

three-dimensional case.

0Q is the boundary of Q. Wy (M,r) is the solution at
f = @ = 0, with the form of

1) =Y bF(M)e"sint

(3.32)

in which ) denotes >, > .and > . for 1D, 2D, and
3D cases, respectively. n, m, and k can start from either 0 or
1 depending on the given boundary conditions in the x-, y-,
or z-directions, respectively. F(M), a, /, and N are given by

X, (x), one-dimensional case
FM) =< X,(x)Yn(y), two-dimensional case
X, (X)Y(y)Zi(z), three-dimensional case,
(3.33)
1/1 1 1 2
st (L) ﬂ:_W_(_HBZ),
2 \ 19 2 To
(3.34)
where
A, one-dimensional case
A=< A+ s two-dimensional case (3.35)
An + Am + Ag, three-dimensional case,
N,, one-dimensional case
N =< N,N,, two-dimensional case (3.36)
N,N,,Ni, three-dimensional case.

The integral fQ denotes the definite integral, double integral,
and triple integral depending on the dimensions of Q. The
eigenvalues, eigenfunctions, and normal squares of eigen-

J. Appl. Phys. 109, 104702 (2011)

functions (An, Ams 4> Xn(%), Y (¥)s Zi(2), Ny, Ny, and Ni)
can be directly obtained from Table II based on the corre-
sponding boundary conditions.

To apply the solution structure theorem and the method of
separation of variables (or Fourier expansion method), the
boundary conditions must be linear, homogeneous, separable,
and with constant coefficients. If f§ is purely imaginary for some
n, m, and k, we can change sin ft into (&' — e~/") /(2i).

When ¢(M) and (M) satisfy the consistency conditions,
i.e., both satisfying the boundary conditions (well-posed prob-
lem), we have another form of solution structure theorem for
the (M) — contribution problem:

Theorem 1'. Let Wy, (M, 1) be the solution of the well-
posed problem

ror ot , 0

%EJFW_A AT + B aAT, Q x (0,+00)
oT

L(Ta %) 00 - 07 (07 +OO)

T0.0) =0, (0 =) @

(3.37)

The solution of the well-posed problem

1or T |, , 0
wor T or = APAT + B2 AT; Qx (0, +00)
orT
L(Ta %) 20 - 07 (07 -|-OO)
TM,0) = o(), T (,0)=0; 0
(3.38)
is
1 0
T(M,t) = <r+8t> Wo(M,t) + W g, (M,1).  (3.39)
0

Proof. According to Theorem 1, we only need to prove

B*W (M, t) = W_pop, (M, 1) (3.40)

for well-posed problems. By Eq. (3.32), we have

= IB’bF(

. 1
b —@Lq)(M)F(M)dQ,

B*W,,(M, 1) M)esinfit

WfBZA(p (M7 t) = Z b**F(M)e“’si_nﬁt
1

ok _n2
b =5 L B2A@(M)F(M)dQ,

where F(M), a, 3, 2., and N have been defined in Egs. (3.33)—
(3.36). Therefore, we wish to prove that
(3.41)

;VJ P(M)F(M)dQ = _J Ap(M)F(M)dQ,
Q Q
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where Noting that for well-posed problems, ¢ (M) also satisfies the
separable boundary conditions, so that it can be written as
XN” . .
/1”:_X_,,’ one-dimensional case o(x), one-dimensional case
" " . .
=% AntAm=— <X n—i-Y m>7 two-dimensional case PM) = ¢1(xX)92(3); two-dimensional case
X;{// Y,,;/” i 01(X)@,(y)@s(z), three-dimensional case.
Dt da= | 24428 three-dimensional case.
n Am+ Ak (Xn Y, + Z ) ree-dimensional case hus,
" (x), one-dimensional case
Ap(M) = § @"1()@2(y) + @"2(y) @, (), two-dimensional case

i

"1 ()02 (y)03(2) + "2 ()01 () 93(2) + @"3(2) @1 (x) (), three-dimensional case.

In the following, we prove Eq. (3.41) for 1D, 2D, and 3D cases successively.
For one-dimensional case,

X/ln [
/IJQ o(M)F(M)dQ = — X, Jo @ (X)X, (x)dx

1y
_ _J X" (x)p (x)dx
0

1
= J X (x) @' (x)dx — X', (x) p(x) 8

where the relation
X ()9 (x) = Xu(x)p(x)]] =g, = O

has been used since both X,(x) and ¢(x) satisfy the same linear homogeneous boundary conditions at x = 0 and x = /.
For two-dimensional case,

] otnronaa=- (32 22V [ oot

1

N 1, 1
—jwwwmwaL%mmmw—j¢mwmw@L%wnww

0 0

; 1 )
{[Xn(x)(P,I () = X'u(x) 1 (0)]]g — JO Xu(x)o", (X)dx} J @2(9)Ym(y)dy

0

[y

b ("
+ {[Ym(y)(Plz(Y) - Y,m(y)(f’z(ymoz_J Ym()’)(/’ﬁz()’)d}’} J @1 (X)X, (x)dx
0 0

[y

== | X0 e |

10 Iy 1

xmwzm@j%wmmm

P2(0)Ym(y)dy — J .

0

L
=7, JO [0"1(X)92() + 0"2(9) @1 (X)]X, (x) Y. (v)doxcly

— — | ApnF(ae,
Q
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where the relations
X ()91 (%) = X'u(x) 1 ()] ] g, = O,
Y ()@ 2(3) = Y'u(¥)@2(0)]l;—0s, =0

Y//m Z/l k>
+=+ 2
Ym Zk

) JQ o(M)F(M)dQ = — ();

Jo

L I
- %owuw@j

JO 0
I3 1y

- ez

JO 0

= {[Xn(X)w’l () = X' (1)1 ()] ﬂ Xa(x) 9", (X)dX}

l

- | za@ee|

0

where the relations
X ()" 1 (x) = X'u(x)@1 (¥)]] o, = O,

Y ()02 () = Y'n(3)02(0)]ly=0s, = O,
[Zc(k)9'3(2) = Z'1(2) 93(2)]]. g4, = O

have been used because F(M) = X,(x)Y,(y)Z(z) and

(M) = ¢, (x)@,(y)p3(2) satisfy the same linear homogene-

ous boundary conditions in x-, y-, and z-directions. There-

fore, we have proved Theorem 1’ for 1D, 2D, and 3D cases.
In summary, the solution of the well-posed problem

1or 9T , 0
?OE+W_A AT +B* = AT +f(M,1); Q x (0, +00)

L(n?z>
on)\sq

T(M70):(p(M)7 %(M,O):lﬁ(M), Q

(3.42)
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have been used because F(M) =X,(x)Y,(y) and (M) =
@, (x)@,(y) satisfy the same linear homogeneous boundary
conditions in both x- and y-directions.

For three-dimensional case,

(X) @2 (¥) 93(2) X, (X) Y () Zie (2) dxdydz

1 1 I3
_ wwmmm@[%mmw@L%@A@w

I3
¢5(2)Z(z)dz
0
)
. P2(0)Y"n(y)dy
I3
¢3(2)Zi(z)dz
0

rwme@J

0

Enmm%m@}r

0

13
%wmmmL%@a@w

I3 1y L
zuawu@w}L¢mumuwwL¢m@WMw@

I3

03(2)Zi(2)dz
0
)

¢3(2)Z(2)dz
0
Iy

. ®2(9)Ym(y)dy

=—3]1”Wuw%@mxn+¢ww%awxn+¢ua%wmxmmawuwawwww

can also be written as

T(M,t) =Wy (M,1)+ <;+gt)wm(M,t)

t
W peny (M, 1) +J W (Mt —t)dr,  (3.43)
0

where Wy, (M, 1) is the solution at f = ¢ = 0 with the form of
(3.32).

2. Polar coordinates

Boundary conditions of all three types for mixed prob-
lems in a circular domain become separable with respect to
the spatial variables in a two-dimensional polar coordinate
system. In this section we focus on the solution of the mixed
problem:
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10T 8T 2 0

%E_FW_A AT(I,G,Z)+B 5
or -0

L(T7 W) . _0, (07 +OO)

T(r,0,0) = ¢(r,0), 9L(r,0,0) =

ot

where D denotes the circular domain: 0 < r < ry and
0<0<2n A is the Laplacian in polar coordinates:
0 )or? + (1/r)0/0r + (1 /rz) PJ00>.  L(T,dT/or)|,_,
=0 encompasses all three types of linear homogeneous
boundary conditions, with 9T /Or standing for the normal de-
rivative on the circle » = ry. The linearity of (3.44) ensures
that its solution is the superposition of three solutions from
(r,0), o(r,0),and f(r, 0, 1), respectively. Following a simi-
lar procedure in Sec. III A 1, we first develop the solution of
the yy— contribution problem in polar coordinates, and then
give and prove the theorems that relate the solution of the
Y— contribution problem with solutions of the ¢— and f—
contribution problems.
The solution from (r, 6) satisfies

Lot ot
100t OFf

or
L(T,—
( ’61’ ) r=ry

T("79>0) 207 %(I’,H,O) :lp(ha)

=A*AT(r,0,1) —i—BzgtAT(r, 0,1);D x (0,4+00)

(3.45)

Considering a solution with the form of T(r,0,1) =
v(r,0)I'(¢) and substituting it into the equation in (3.45)
yield, with — /4 as the separation constant,

(t) ++-1'(r) _Av(r,0) P
AT()+ BT (1) v(r,0)

Thus, we arrive at

I (f) + (i + ABZ) I'(t) + AT (1) = 0 (3.46)
)
and
. v 1dv 1
AV(I",H) +/LV<I’,9> =0 or W—F’—AE—F"—Z@—F}\.V—O
L (v,%) =0,v(r,0+2n) = v(r,0),
r=ro
(3.47)

J(x);
I (x);

2nd type of boundary condition: R’'(ry) = 0; ,ugo) =0;

J. Appl. Phys. 109, 104702 (2011)

AT(7,0,0)+£(7,0,0):D x (0, +00)

(3.44)

Y(r,0);D,
|

where v(r, 0 4+ 27) = v(r, 0) is a natural boundary condition.
Further, assuming a solution of (3.47) with the form of
v(r,0) = R(r)©(0), (3.47) becomes, with —u as the separa-
tion constant,

1
R"+ =R + )R Y
- r  _ = =

R e *
2
Therefore,
1 Iz
o 2 pl e _ / _

R+ R + (z rz)R O,L(R,R)|,_, =0, (348
O" +u® =0,0(0 + 21) = O(0). (3.49)

The problem (3.49) has the solution of
®(0) = a, cos n + b, sinnd (3.50)

with u=n*,n=0,1,2,... to satisfy the periodic condition
00 +2n) = O(0).

Substituting p = n? into Eq. (3.48) yields an eigenvalue
problem of Bessel equations with 1, > 0:

1 .ot
R”n + ;Rln + (/Ln - r2>Rn =0

L(Rn, R'1)l,

(3.51)
=0,|R,(0)| < o0, |R',(0)] < 0,

=ro

where the bounded conditions |R,(0)] < oo and
|R",(0)| < oo are another kind of natural boundary condition.
The general solution of (3.51) is

Ru(r) = cadu(N o) + dnYu(\/2r),

where ¢, and d, are arbitrary constants. J,, and Y, are the n-
th order Bessel functions of the first and the second kinds,
respectively. Applying the bounded condition |R,(0)| < co
and lim, .o Y,(\/Z,r) = oo, we obtain d, = 0. Therefore,
the eigenfunctions and eigenvalues of (3.51) for three types
of linear homogeneous boundary conditions are

Jn(\/a")v Apm = (NS;:O/”O)z»

Sg‘) is the m-th (m = 1,2, 3, ...) positive zero point of

(3.52)

where

Lst type of boundary condition: R(rg) = 0;

(3.53)

1
—xJ',(x) + hJ,(x); 3rd type of boundary condition: R'(rg) + hR(ro) = 0.
o
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With these eigenvalues 4,,, we obtain the solution of the
(3.47)

Vo (7, 0) = (@ €08 1O + by, sin 10)J (N L)

where a,,, and b,,, are not all zero. We can also have the
characteristic roots of Eq. (3.46):

1 1 > 1 )\ 5
Ma=z1—|—+ JomB~ ) = —+ AuB — 4 mA
2 7o To

= O~ Bk,
1/1
I )~nm32 ’
2 (To - )

(3.54)

Ol =

J. Appl. Phys. 109, 104702 (2011)

1 1 :
ﬁnm =3 4111}11/42 — | —+ AntZ .
2 T0

Therefore, the T(r, 0, ¢) that satisfies the equation and bound-
ary conditions of (3.45) reads

(3.55)

+00
T(r,0,t)= Y &™"[(a}, cos Bt + b},sinB,,r) cos nd

n=0,m=1
+ (¢ €08 Bt + i f,t) sin 10] Ty (\/ Zr).

The initial condition T'(r,0,0) = 0 leads to af,, = ¢}, = 0.
b;,, and d;; can be determined to satisfy the initial condition
dT(r,0,0)/0t = ys(r, 0). Finally, we obtain the solution of
the — contribution problem (3.45):

Wy (r,0,0) = 3202 ey (B}, 08 10 + 5, sin n0)J, (\/ Zur)e*'sin s, t

1 T o
b, =— ry N, (\/ Ayt )1 cos nldrd0
" NoNumB, J - L Vi O o) (3.56)
1 s T
d;, = 7J J 7, O (\/ A7 sin nOdrd0,
S| ), 0/
where Nj is the normal square of {1,cos 0,sin 0, ..., cos n0, sinn0, ...}
2n, n=0
Nuw = J3* J2(\/Zumr)rdr is the normal square of {J,(v/Zu,r)} with the value of:
1‘2 7
?OJ,H_I (1), 1l are zero points of J,(x),m = 1,2,3, ...
for the 1st type of boundary condition: R(ry) = 0;
r 2
)
’EO 1-— <%> Jﬁ(uﬁn")),uﬁ,’f) are zero points of J',(x),m = 1,2,3, ...
i Hon o (3.58)
for the 2nd type of boundary condition: R'(rg) = 0; ;" = 0;
2 h 22 1
%0 1 Jr(ro)(—)zn J? (ugrf’)), #5:) are zero points of —xJ',(x) + hJ,(x),m =1,2,3, ...
n ro
[
for the 3rd type of boundary condition: R'(ro) + AR (ro) = 0.
[
When T is only a function of r and ¢ (not 0), the solution 101 o°T , 0
structure (3.56) still holds with n being the constant 0. ?OﬁJFW =A"AT(r,0,0) +B @AT(' ,0,1);D (0, +00)
Now we develop Theorems 3 and 4 that relate the solu-
tion of y— contribution problem with solutions of the ¢ — LT oTr _o:
and f— contribution problems. or )l T
r=ro
or
Theorem 3. Let W, (r, 0, t) be the solution of y— contri- T(r,0,0)=o(r,0), o (r,0,0)=0
bution problem (3.45). The solution of ¢ — contribution
problem (3.59)
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is

10
T(r,0,1) = (% + 5) W, (r,0) + B*W,, ,(r,0), (3.60)

where A, = (u%’) /ro)2 with ,uﬁ,’]) being the positive zero
points of (3.53).

Proof. By following a similar approach in solving
(3.45), we obtain T(r, 0, t) satisfying the equation and bound-
ary conditions of (3.59) with a form of

+00

Z " [(@pm €O8 Byt + bymsinf,,,t) cos n
n=0,m=1
+(Cm €08 Byt + dymsinfs,,,,t) sin n0)J,,(\/ Lum?)-
(3.61)

T(r,0,1) =

Applying the initial condition T'(r, 0, 0)

1 T ro
Apym =
NONnm J\7n J()

1 T (o
Cnm = NONnm J—n JO

Applying the initial condition 9T /0t(r, 0,0) = 0 leads to

= ¢(r,0) yields

@(r, 01y (\/ Dor) 1 cOS nOArd0

@(ry Oy (\/ )1 sin nOdrd0.

O‘nm

anmanm + bnmﬁnm = 07 or bnm = - [3 anm
—nm
. _ O‘nm

Cﬂlﬂdl‘liﬂ Jr dnménm - 07 or dnm - ﬂ Cnm-

nm

Here Zum, %ms Bums No, and N, are given by Egs. (3.52),
(3.54), (3.55), (3.57), and (3.58), respectively. Comparing
Apms bums Cnm, and d,,,, with b* and d*, in (3.56), we have

nm nm
Sk sk

Apm = ﬁnmbnm7 nm — _anmbnmz
%k %k

ﬁ dnm, nm = _fxnmdnmy

where b;" and 4, have the same structures with b;  and d;,,
with lﬁ(r ()) replaced with ¢(r, 0),

1 8T o’T
To 6t 8
7(,0,0) =0, %—f( 0.0) =0

is
T
T(r,0,t) = J Wy (r,0,t — t)dr,

0

(3.65)

where f; = f(r, 0, 7).

= A2AT(r,0,1) + B? %AT(r, 0,t) +f(r,

J. Appl. Phys. 109, 104702 (2011)

1 T ro .
by = NN B J_n L @ (r, 0y (\/ 2t 1 cos nOdrd0
—nm

s )
di = WJ J @ (r, 0y (\/ Aymr)r sin n0drd0.

—nm

(3.62)

Substituting these relations into (3.61) yields

+00
T(r,0,t) = Z anmt{(l[gnmb;; cos fB,t — otnmb;;si_nﬁnmt>
1

n=0,m=

sk s,k v
x cosnl + (ﬁnmdnm coS fut — Otnmd,,m@ﬁnml>

X sin nO} Ja(\ L)

(3.63)

By the structure of Wy, (r, 0,¢) in (3.56), we have

w_ Z (byr cosnO-+d sinn0)

n=0,m=1

< (it 8,008 Bt )€1\ Tam).
Also,

_W(p (r7 07 t) + BzW}mm(f’

ZOO: ( "’intz)
0,m=1

n=

x (byr cosnl + dyy sinnb)
X Ju(\/ Aymr) €' sin 1

By adding OW,, /0t and (1/79)W,, + B*W,,,,, we can readily
obtain that the solutions given by Egs. (3.60) and (3.63) are
exactly the same. Theorem 3 is therefore proved. Theorem 3
still holds with n being the constant 0.

Theorem 4. Let Wy, (r, 0, ) be the solution of y— contri-
bution problem (3.45). The solution of f— contribution
problem

0,1): D x (0, +00)

(3.64)

Theorem 4 can be proved by following the same way as
the proof of Theorem 2.

Therefore, by the principle of superposition, the solution
of
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10T 0°T 0
———+—— = A’AT(r,0,1) + B> - AT(r, 0,1 - 0,1);D x (0
et (1,0,1) + B o AT(r, 0,1) + (7, 0,1)5D x (0,+00)
oT
L(T,— =0;(0 3.66
(n55)]_ =o04m0 (.60
oTr
T(r,0,0) = 9(r,0). - (,0,0) = Y(r,0):D
[
is tions, but ,uﬁ,:’) are boundary-condition-dependent as given in
(3.53).
) When we use the structure of Wy, in Eq. (3.56) and the
T(r,0,1) =Wy(r,0,1) + (‘C_o + 5) W (r,0,1) solution structure Theorems 3 and 4 to obtain the solution of

(3.44), if B, is purely imaginary for some n, m, and k, we

T0 1 1 Bt _ a—iBumt i
CBW, o (r0,1) + J Wi (r, 0,1 — t)dz, (3.67) can change sin 3,7 into (e e )/ (2i).
0

3. Cylindrical coordinates

where Wy, (r, 0,¢) is available in (3.56). Note that Eqs. (3.56) In this section, we seek solutions of mixed problems in a
and (3.67) are valid for all three types of boundary condi- cylindrical coordinate system,
|
1or T , 0
%E—’_W =A°AT(r,0,z,t) + B 5AT(r, 0,z,t) +f(r,0,z,1); Qx (0,+00)

oT 01
LIT el =0:(0, 400 3.68
( ’8r’82> 20 0: 0, ) (5.68)

T(,0,2,0) = 0(r,0.2), 0 (r.0,20) = (0,2 ©

where Q stands for the cylindrical domain:0 < r < rp, 0 < 0 < 27, 0 < z < ly. 9Q is the boundary of Q. A is the Laplacian in
cylindrical coordinates: 9* /0r? + (1/r)8 /Or + (1/1‘2)82/802 + 0% /92*. L(T, 0T /9r, 0T | 9z)| 5, = O stands for a total of 27
combinations of boundary conditions of all three types. Again, we first find the solution from ¥/(r, 0, z), and then examine the
relation between the solution from (r, 6, z) and those from ¢(r,0,z) and f(r, 0, z, ).

The solution due to Y(r, 8, z) satisfies

10T 0T 2 , 0
%E+W—A AT(’,G,Z,t)+B &AT(V,@,Z,I), QX (07+OO)
oT oT
L7, — — =0:(0 3.69
( ’6r’8z> 20 (0, +00) ( )
T(r,0,2,0) =0, - (r,0,5,0) = (r,0,2); Q.

ot
Assume T(r, 0,z,1) = I'(t)V(r, 0, z). Equation (3.69) can be written as, with —1; as the separation constant,

' +20(0)  AV(r,0,2)

A2T(¢) + BT (1) o V(r,0,z) =~
We thus arrive at
" 1 2 / 2
I'"(r) + (— + A1B >F (1) + LA T(r) =0 (3.70)
70

and

2 1 1 2 2
AV(r,0,z) + 2,V(r,0,z) =0 or a_v+ o o V+ﬂ+ilvzo

o v Rop oz
ov
L(V,E)

=0,V(r,0 +2m,z) =V(r,6,z).
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Let V(r,0,z) =v(r,0)Z(z). Substituting this into (3.71)
leads to

Av(r,0) 7" (2) PR

vr,0) —zZ@ T

where — /4, is the separation constant. We have

v 10v 1%

Av(r,0) + Zov(r,0) =0 or 2ot EYE + Aoy =
v
L<v,5> - =0,v(r,0+2m) =v(r,0)
(3.72)
and
Z"(z) + (1 — A2)Z(z) =0
(3.73)
L(Z,2))|,_, = 0,L(Z,Z')|Z:10 =0.

We have obtained the solution of the eigenvalue problem
(3.72) in Sec. Il A 2:

Vo (7, 0) = (@ €08 10 + by, sin n0)J,, (\/ Ay).-

in which a,,, and b, are constants. /,, = /, are the eigen-
values, (1" / ro)z, where ;") are the zero points of (3.53).
There are a total of nine combinations of boundary
conditions in the problem (3.73). Let /4 = 41 — /, and Z(z)
be the eigenvalues and eigenfunctions, which are available
in Table II. Substitute 1; = 4,, + 4 into Eq. (3.70) to

obtain
|

Znmk o

Znmk o

where Ng, Ny, and N; are normal squares of {1,cos0,

sin, ...,cos n0,sinnd, ...}, {J,(v/Zumr)} and {Z(z)}, and
given by (3.57), (3.58), and Table II, respectively.

J. Appl. Phys. 109, 104702 (2011)

1 , )
—+ (o + )BT (1) +

I’ (¢t
0+

(Aum + 2)AT (1) = 0.
(3.74)
Its solution is
Lok (1) = € (Coumic €OS Pyt + iy SINB,01),
where ¢, and d,,; are constants. o, and f,,, are given

by

1 ,
Opmk = — = |:_ + (inm + Ak)B2:| 3

1 1 2
ﬁnm =3 \/4(/1nm + lk)Az - [_ + (lnm + )\.k)B2:| .
2 70

Therefore, the T(r,0,z,¢) that satisfies the equation and
boundary conditions in (3.69) can be written as

E e%mzﬂ

n,mk

+ (c:;mk cos ﬁnmkr + d;mkSi_nﬂnmkt) sin nO]

X Jn(\/mr)zk(z)a

where ) . stands for a triple summation with n and m
starting from 0 and 1, respectively, and k starting from either
0 or 1 based on the boundary conditions in the z-direction.

The initial condition 7'(r, 0,z,0) = 0 yields &, = ¢}
=0.b;,, and d;;, . can be determined by applying the initial
condition OT(r,0,z,0)/0t = (r,0,z). Finally, we obtain
the solution of (3.69),

0 % t nmk cos ﬁnmkt + bnmkSIHﬁnmkt) cosnf

(r 9 Z, t Zn m.k (bnmk cosnf + dnmk sin ne)‘]’l( ;“nmr)zk (Z)e%mk,Si_nﬁnmkt
bk = NONnme /3 H U (r, 0,2)rJ (N 2umr) Zi(z) cos nOdrdOdz

(3.75)

i = NoNnmeﬁ JJ;& 7,0, 2)rT (/2w ) Zi (2) sin nfdrd0dz,

Theorem 5. Let Wy (r,0,z,t) be the solution of y—
contribution problem (3.69). The solution of ¢— contribution
problem

10T O*T ) , 0
%E+W_A AT(I’,H,Z,[)—‘-B E‘AT(l?éLZ,t)’ QX(O,"‘OO)
or oT
el —0- 3.76
L(r5h5)| =00 (3.76)
oT
T(r,0,z,0) = o(r,0,z), E(r,@,z,O) =0; Q
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is
1 8 " 2
T(r7 0,z t) = 'C_O + E WQD(’ )0, Z) +B W(i»,m+/1k)fp("7 0, Z)a
(3.77)

where A,, and /; are available in Eq. (3.52) and Table II,

J. Appl. Phys. 109, 104702 (2011)

Theorem 5 can be readily proved by following a similar
way in the proof of Theorem 3 and noting that o, =
—[1/70 4 (Zum + 4)B?] /2.

Theorem 6. Let W, (r, 0, z, t) be the solution of y— con-
tribution problem (3.69). The solution of f— contribution
problem

respectively.
|
10T O°T ) , 0
oo —|—W =A°AT(r,0,z,t) + B EAT(}‘, 0,z,t) +f(r,0,z,1); Qx (0,+00)
T OT
L T,B—,a— = 0; (0, +0c0) (3.78)
or ' 0z) |5
or
T(r,0,z,0) =0, E(r, 0,2,0)=0; Q
|
is is called the Green function of the dual-phase-lagging heat
7o conduction equation in a cylindrical domain. The Green
T(r,0,2,1) = Jo W (r,0,2,1 — 7)dx, (379 function is clearly boundary-condition dependent. When

where f, = f(r,0,z,1).
Theorem 6 can be proved by following the same way as
the proof of Theorem 2.
By the structure of Wy, in Eq. (3.75), the T(r,0,z,1) in
Eq. (3.79) reads
t

T(r,0,z,1) = J We(r,0,z,t — t)dt
0

S pom——

n,mk Enmk

Sk (1—7)

X f(r, 0%, 2%, 7)(cos n0 cos n0* + sin nf sin nd*)

X T (\/ D)

X 1 Tn(N At ) 21 (2) 21 (27)
X sinf3,,. (t — ©)dr*d0*dz"dz

t
= J JﬂG(r,r*;H, 0% z,2%1t—1)
0
0

x f(r*, 0%, 2%, 7)dQd-, (3.80)
where
1
G * 9 6*' *'t— = - @@ “mnk(fif)
(r,r T HE T> y;CNoN"meﬁnmke

X T (N Dot V(N T )1

X Zi(2)Zi(z*) cosn(0 — 07)

X sinf, (1 — 1) (3.81)

|

10T o°T ) , 0
%E‘FW—A AT(I,9,¢,Z) +B aA

or
L(r.5)

r=roy

= 0; (0, +00)
oT

T(r’ 67 ¢7 l) +f(r7 97 ()Zs) l)’

f(r,0,z,t) = 6(r —ro,t — tg), the solution of (3.78) reduces
to

T(r,0,z,t) = G(r,ro; 0, 60;z,20; 1 — 10),

where r = (r,0,z), ro = (ro,00,20). Therefore the Green
function G(r,ro; 0, 00; 2, z0;t — tp) is the solution from the
source term o(r — ro,f — fo).

According to Theorems 5 and 6, the solution of (3.68) is

T(r,0,z,t) = Wy(r,0,z) + (l

0
o +E>W¢(r,0,2)

7

0
+ BZW(/117n,+)uk>(P (1‘7 07 Z) +JO IA/fI (r, 0, Z, t— T)df,

(3.82)

where Wy (r,0,z) is given by (3.75). Therefore, we can
directly write out the solution of (3.68) based on (3.75) and
(3.82) without going through all the details. If §,,,; is purely
imaginary for some n, m, and k, we can change sin f3,,,;¢ into
(eiﬁnmk’ —_ e*iﬂumk’)/(zi)_

4. Spherical coordinates

Boundary conditions of all three types for mixed
problems in a spherical domain become separable with
respect to the spatial variables in spherical coordinate sys-
tem. In this section, we develop the solution of the mixed
problem

Q x (0, 4+00)

(3.83)

T(r7 0, ¢,0) = QD(I‘, 0, d))v —(I’, 0, ({bao) = l//(rv 0, ¢)7 Q,

ot
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where Q stands for a sphere of radius ry, with 0Q as its
boundary. 0 is the azimuthal angle:0 < 0 < 27, ¢ is the po-

J. Appl. Phys. 109, 104702 (2011)

lar angle:0 < ¢ <m. A is the Laplacian in spherical
coordinates:

”? 20 1

Cr2or\" 0r)  rsin¢00°  r?sing 0¢

¢

cos¢p 0 1 9?

T Tor T Psing ot Zsing 0 2 agt

The boundary condition L(T', 9T /Or)|
fies the problem:

r=r

ot

, = O includes all three types. Again, we first seek the solution Wy (r, 0, ¢,t) that satis-

Lor T L0
%EJFW*A AT(r,0,¢,t) + B &AT(’%@’ ¢,1);  Qx(0,+00)
L(T, g) —0; (3.84)
or ),
oT

T(r,H,d),O):O, —(V797¢70)=¢(Va9a¢);

Assume T = I'(1)V(r, 0, ¢) and substitute it into the equation of (3.84). We obtain the two eigenvalue problems with / as the

separation constant

(1) + <% + ;LBZ) I'(f) + 2A’T(1) = 0

and

AV(r,0,¢)+ AV(r,0,¢) =0

or 62_V n 20V 1 0*
or?

ov
L (V, E)

Further separate V(r, 0, ¢) into R(r)Y (0, ¢) and substitute it
into the equation of (3.86). We can obtain that

r=ro

PR+ 2R + [Ar* —(1+1)]R =0, L(R,R)|,_, =0
(3.87)
and
1 Y 1 0 oY
————t————(singp=— | + (I + 1
sin2¢892+sin¢)8q§(sm¢ad)> +I(I+1)
Y=0, Y(0+2m¢)=Y(0,0) (3.88)

in which the separation constant is customarily denoted as
I(I+1). Assume Y = O(0)D(¢). Substituting it into Eq.
(3.88) leads to

0"+ 1@ =0, O(0+21)=0(0) (3.89)
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For | Psinig o | Psingdp | 2 ogt

=0,V(r,0+2n,¢) =v(r,0,9).

(3.85)
cos¢p AV 19*V
+AV(r,0,¢) =0
V(0. ) (3.86)
[
and
" + (cot ) + {l(lJr 1) — ."2 ](I)_o,
sin“¢
0<¢p<m |D¢)| < oo, (3.90)
where 7 is the separation constant.
The eigenvalue problem (3.89) has the solution of
®,(0) = a, cosnb + b, sin n0 (3.91)

with n =n?,n=0,1,2,... to satisfy the periodic condition
O(0+2n) = O(0). a, and b, are arbitrary constants and
cannot be all zero. Also, ag # 0.

With i = »n?, Eq. (3.90) forms an eigenvalue problem of
the Legendre equation when the eigenvalues [(I+ 1) =
m(m + 1). Its solution is
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where P, (cos () is the Legendre polynomial of degree m;
P! (cos 0) is the Associated Legendre polynomial of degree
m and order n.

With I=m=0,1,2,..., Eq. (3.87) together with
|R(0)] < oo and |R'(0)| < oo forms another eigenvalue prob-
lem. To solve this problem, define a new variable x = 212y
and a new function y(x) = x'/2R. Equation (3.87) thus trans-
forms into a Bessel equation,

2
(m + 2)

. 1/2 11/2
[cher%(i r)—&—de_(m%)(A r)],

2y |2 - y=0,

whose solution is

2nd type of boundary condition: R'(ry) = 0;
D + (x); 3rd type of boundary condition:

J. Appl. Phys. 109, 104702 (2011)

,2,...; whenn=20
3

1
,2,3,...and n <m; whenn >0, (3.92)

where ¢,, and d,, are constants that are not all zero. To satisfy
|R(0)] < oo, we have d,, =0 and c¢,, # 0. Without taking
account of a constant factor, R,,(r) can be written as

e () (270,

Here j,(x) = \/7/(2%)Jps1/2(x) is the spherical Bessel
function of the first kind. The eigenvalues are thus

Ry (’)

(er%) 2
I =1y Y/ro), m=0,1,2,..., k=1,2,3,...

Eigenfunctions:
. . m+3
]m(imkr) =Jm (l’l’[(( 2)/7’()) )

(m+1/2)

where 1 are the k-th positive zero point of

Ist type of boundary condition: R(ry) = 0;

(3.93)

R'(ro) + hR(ro) = 0.

Therefore, we obtain the solution of the V(r, 0, ¢) — prob-
lem (3.86):

Vik (1,0, ¢) = (@i €08 O + by sin n@) P (cos H)jm(irln/kzr),
n<m.
The characteristic roots of the I'(¢)-function (3.85) are
1 1 5 1 :
rao=—=|—|—+AuB" | = —+ )»kaz — 4imkA2
' 2 T0 To
= Olmk iﬁmki,
1/1
ok = — = (— + ;vka2), (3.94)
2 T0
1 1 :
Bk = 5\| 42miA* — | —+ LuB? | (3.95)
2 T0
|
(o 0]
Wy (r,0,¢,1) = (b cOsnl +d
n=0,m=0,k=1
1 T (T To
nmk NONnmNmkEmk JO J\77I J()
§ 1 T T 70
A |
NONnmNmkEmk 0J-nJ0O
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Y(r, 0, )P (cos @)jm(\/ i1 )r* cos nl sin pdrd0de

so that
L (1) = €™ (i €08 Bt + eI, 1)

Thus, the T(r, 0, ¢, r) that satisfies the equation and boundary
conditions of (3.84) is

T(r,0,¢,t) = Z [ (@ COS Byl + by SinP,yit) cos n

n,mk
+ (szk €Oos ﬁmkt + d;imkSi_ankt) sin 1’10}

X P (cOS )jm(ZL12F). (3.96)

The initial condition 7(r, 0, ¢, t) = 0 yields a;,,, = ¢}, = 0.
by, and d; . are determined by the initial condition
0T /0t|,_, = 0. Finally, we obtain the solution structure of

Wy, satisfying the problem (3.84),

;;mk sin n()) P, (cos @)jm (v ;Lmk”)eamktSi_nﬁmkt

(3.97)

Y(r,0,¢)P, (cos ¢)jm( Joit)7? sin 10 sin pdrd0d g,
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where Ng, Ny, and N, are normal squares of {1,cos0, sin0,...,cosnf,sinnd,...}, {P" (cos¢)} and {j,,,(,u,i'"“/z)/ o) }s
respectively, given by

Ny — {2”’ n=0 (3.98)

Mo = | [Phleos )] sin gy = {100 2 (3.99)
0

{ng (uim+%))] gy

Ist type of boundary condition: R(rp) =0

- m(m+ 1) 72 ( (m+§)>,

3 (m +l) 2 m+% k
™o (ﬂk ' (3.100)
2nd type of boundary condition: R'(rp) =0

m+4)

N
=
ROSS

(hro +m)(hro —m —1)| » (M+%)>
1+ (m+L) J’”%( k ’

:
3rd type of boundary condition: R'(ry) + iR (ry) = 0.

Theorem 7. Let Wy (r, 0, ¢, 1) be the solution of the y— contribution problem (3.84). The solution of ¢— contribution
problem

10T O°T 5 9

LY AT 290 pr(r .

o T an APAT(r,0, 1) + B 5 AT(r,0,¢,1); @ x (0,+00)

L<T’ @) =5 (3.101)
or r=ro

oTr
T(I‘,9,¢,O) = ({)(l‘, 97 ¢)) E(r797¢70) = 0
is 1 P
T(l‘, 07 (;bv t) = (‘L'_ + a) W(p(rv 07 ¢) + BZWMW("& 97 4)) (3102)
0

Proof. Following a similar approach as in solving the — contribution problem, we obtain the T(r, 0, ¢, t) that satisfies the
equation and boundary conditions of (3.101),

T(r,0,¢,t) = Z ™ (@i €08 Bt + Dt SINSt) €08 1O + (Cpie €08 Bt + Ay I, 1) sin nd)

n,m.k

X P! (oS §)jm(AVCT), (3.103)

where dmis bumkcs Crmies a0d dyyy are determined by the initial conditions T(r, 0, ¢,0) = ¢(r, 0, ¢) and T (r, 0, ¢,0)/ Ot = 0,

1 Toem o
Apie = —J J J @(r, 0, )P" (c0S })jm(\/ Jmir’)r* cos n0 sin ¢pdrd0de
NONnmNmk 0J-nJO
1 T (ro
Crmk = 7J J J @(r,0, P)P" (cos @ )jm(\/ i1 )r* sin n0 sin pdrd0de,
NONnmNmk 0J-nJOo
Ok
Lk Anmk + Emkbnmk =0, or bym = — Fal1nzk
Zmk
Olmik

Lk Cnmk + Emkdnmk = 07 or dnmk = - ﬁ_cnmlw
Tmk
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Based on the structure of Wy, (r, 0, ¢, ) in (3.97), we have

Also,
—Wy(r,0,¢,1) +B*W;,,,(r,0,¢,1)

1
— (r + /lkaz) (b cosn0 + d sinn0) Py (cos ¢)
0

J. Appl. Phys. 109, 104702 (2011)

aw( ‘7 07 3 t O
% - Z (b cosnd +d, sinn0) (Otmksm[f t+p,, cos ﬁmkf> o
n=0,m=0,k=1

X P (cos ¢) m( Ak

T (T o
b= NoNnmNmkﬁmk Jo J J L )P, (cos ) jim( imkr)r2 cos nf sin ¢pdrdOd¢d = ci"—:r
T "o Cnmk
o= 7,0, )P, (cos @)j r)r” sinn0sin ¢pdrd0d¢ =
A i s | || et 0 0P eos dlin( iy o =2

By adding OW,(r,0,¢,1)/0t and (1/10)W,(r,0,¢,1)
+ B*W,,,,(r,0,¢,t), we can readily prove that the result
from Eq. (3.102) and the result obtained by separation of var-
iables, Eq. (3.103), are the same.

Theorem 8. Let Wy, (r, 0, ¢, ) be the solution of the y—
contribution problem (3.84). The solution of the f— contribu-

X (A Aer )€ sin B, 1. tion problem
|
10T 0T 9]
———+ —— = A*AT(r, 0, B> —AT(r,0 0,9,1; Qx(0
aT
L (T, —) =0; (3.104)
or)|._,
r=ro T
T(r,é),(b,O):O, E(r,97¢70):0
[
is where
t
T(r,0,¢,t :J We(r,0,¢,t—1)dt (3.105)
( ) 0 A ) G(r,r;0,0% ¢, ¢ 1 — 1)
where f; = f(r, 0, ¢, 7). 00 1
Again, Theorem 8 can be proved by following the same = Z mcos n(0* —0) - Pl (cos¢)
way as the proof of Theorem 2. n=0,m=0 k=1 07 nm X mk Ly

By the principle of superposition, the solution of the
problem (3.83) is

Wolr.0..1) + (1

To

T(ra 0, ¢,l) = +§l‘) W(/’(ra 93 d)’ t)

!
FEWool0,0,6) + | Wi(.0.6,1 = 2yt
0
(3.106)
where Wy (r,0,¢,1) has been given in Eq. (3.97),

fe=f(r,0,¢,7). By substituting Wy(r,0,¢,t) into Eq.
(3.105) we can have

!
T(r,@,d),t):J W (r,0,¢,t—1)dt
0

:J;J”G(r,r*;9,9*;¢,¢*;t—f)
Q

xf(r,0",¢" ,1)dQdr,
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X P (€08 " )jm(\/ Tt im (/T ) 2ot )

X Slnﬁnmk( T) .

This is the integral expression of the solution of (3.104). The
triple series G(r,r*;0,0%; ¢, ¢*;t — 1) is called the Green
function of dual-phase-lagging heat conduction equation in
a spherical domain. When f(r, 0, ¢, 1) = 6(r —ro,t — tg), in
particular, the solution of (3.104) reduces to

T= G(l’,ro;@, 905(1’, (l)();t_tO)?

where r = (r, 0, ¢), ro = (ro, 0o, ¢y). Thus, the Green func-
tion G(r,ro; 0,00; ¢, dy;t — tp) is the solution due to the
source term o(r — ro,f — f).

The results presented in Sec. III A also cover those for
the hyperbolic heat conduction equations as the special case
of DPL heat conduction equation at B = 0.


J. Fan
Sticky Note
Marked set by J. Fan


104702-31 J. Fan and L. Wang

B. Solution structure theorems for Cauchy problems
of DPL equations

If the heat conduction problems are defined in
unbounded domain, then there exists no boundary condition.
Such a problem is called the initial-value problem, or
Cauchy problem. Solution structure theorems also exist for
Cauchy problems:

Theorem 9. Let Wy, (M, t) be the solution of

1ar T ., 2 0
T = ATAT + B 5 AT; - Qx (0,400)
oT
T(M,0) =0, —-(M,0) = (M).
(3.107)
The solution of
1ar T, 2 0
- B +W A°AT + B &AT7 Q x (0,4+00)
T(M,0) = o(M), I (,0)=0
(3.108)
is
9 »
T(M, l) = +&_B A (p(Mv t)v (3.109)

where Q denotes one-, two-, or three-dimensional unbounded
domain R', R?, or R®. M represents a point in Q.

Proof. By its definition, W, (M, 1) satisfies

10w, W,

B,
__ A2 2 .
o T ga T AW, B S AW, Qi (0,400)
W, (M,0) =0, aa (M,0) = o(M).
(3.110)

Substituting Eq. (3.109) into the equation of (3.108) and
using the equation of (3.110) yields

1or o*T |, 5,0
“ a[JFW—A AT - B2 AT

10 o o o
o ) o (v

0 o 0
2 Y m 2 Y p2
AAK +2 BA)W] BGIAK v BA)WW]
1w +82
T0 or or?

o (10w, oW, ,0
+&(% o +V_A AW, —B EAWQ,

0
L A*AW, —B25AW(,,)

92
ot

2
—B*A <18W“’ oW, —A*AW, —B*

oo AW(p)_o.
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Therefore, T(M,t) in (3.109) satisfies the equation of
(3.108).
We also have

T(M,0) = (1 0 32A>
T0 81‘ =0
1 ow,
= —W,(M,0) + 8;’ (M,0) — B*AW,,(M,0)
= (M)
and
or 0 o
=t ma)w]
LW, W, 0
T Ot or 5AW
= A’AW,,,
such that
ot = A’AW,,(M,0) = 0.
ot|,_,

Therefore, T(M,t) in (3.109) also satisfies the two initial
conditions of (3.108), thus verifying that it is the solution of
the problem (3.108).

Theorem 10. Let Wy (M, 1) be the solution of (3.107).
The solution of

101 o*T , 0
%E‘FW—A AT +B aAT—i—f([W,l‘), Q x (0,+00)
T(M,0) =0, a—T(M,O):o
ot
(3.111)
is
t
T(M, 1) :J W, (M, — 7)dr, (3.112)
0

where f; = f(M, 7).

Proof. By the definition of Wy (M, 1), the Wy (M,t — 1)
satisfies

1 oWy, 82sz _ A2 20 .
oo Tap T AAWR B G AW @ (0,+00)
Wr(M,1—1)|__ =0, gtW,cf(Mt )| =f(M,1).
=1
(3.113)

Therefore, substituting Eq. (3.112) into (3.111) yields
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101 0T
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1 t !
—I———AZAT—BzQAT:—QJ Wr(M,t — r)dt—l—a—J Wy (M, t — 1)dt

0 Ot OR ot 100t ),

or?

0

t t
— A%A JO W (M, t — t)dt — B2%A JO Wi (M, t — t)dx

_! JfM
7‘[0 0 ot

dt + Wy (M,t — r)\f_t} +

t 2, _ : _
J O"Wy. (M, ¢t ‘c)dT+8WfI(M,t 7)
0 or? ot

=t

t t
—A? J AW, (M, t — t)dt — Bzgj AW, (M, t — t)dt

0

"52WfT(M7t— T)

0

OWr (M, t —
dt + ft( : %)

0 ot

To

1 (fOW.(M,1—
_7J ff( 7t ‘L-)d'f"'J

or? ot

=t

t

t
—A? L AW (M, t — t)dt — B* U QAWﬁ (M, t — t)dt + AWy (M, t — 1) L-i

08!

o \T0 ot

+f(Ma t) :f(M’ t)'

Hence the T(M, ) in Eq. (3.112) satisfies the equation of
(3.111). Clearly, T(M,t) in Eq. (3.112) also satisfies the ini-
tial condition T'(M, 0) = 0. Also,

Jor(M,0) 0 J’
or or

Wi (M,t—1)dt

0 t=0

t
= U QWfT(M,t—r)dT—i-WfT(M?t—r)| ]
081‘ =t

=0
=0.

We have thus proved Theorem 10.
In summary, the solution of

10T 0°T )
—— 4+ —— =A’AT +B* AT +f(M,1); Q
vt +B 5 +f(M,1); Qx (0,+00)
oT
T(M,O) = QD(M), E(Mao) = lp(M)
(3.114)
can be written as, by the principle of superposition,
1 0 5
TM,t)=|——+=—BA|\W,(M,1)+Wy,(M,1)
90 Ot
t
+ J W (M, t — t)dr, (3.115)
0

where Wy, (M, 1) is the solution of (3.107), and f; = f(M, 7).
The Wy (M,t) can be obtained by integral transforma-
tion: one-dimensional Wy, (M, ) can be obtained by using ei-
ther the Fourier transformation with respect to the spatial
variable x or the Laplace transformation with respect to the
temporal variable 7. Two- and three-dimensional Wy (M, 1)
can be obtained by using multiple Fourier transformations.
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J’ (13Wf;(MJ—T) L oW (M1 = 1)

— A’AW;. (Mt — 1) — B? QAWﬁ (Mt — r))dt

or? ot

For example, assume Wy (x, 1) to be the solution of the one-
dimensional problem:

10T T 0 1
100 =0, T (5,0)= yv).

(3.116)

Its Laplace transformation reads

S Fr,5) £ 7T(1,5) — (1) = A2 () 4+ B O T
- X,8) + 5T (x,s) (x) = o2 X, s8x2 X,)

or
> _
(st -|—A2) 5 T(x,s) — <s2 + r) T(x,s) = —(x),
0
so that
* S+ ¥ (x)
~ZT _ W T =7 A1
Ox? (v.) = oy + A? (x.5) g5y O

where T(x,s) denotes the Laplace transformation of T (x,?)
with respect to 7. The general solution of Eq. (3.117) is

T(x,s) = cie*V ) 4 pe V) lJ b(s) e (E=0/als)
2) ya(s)

XY + %J—”S()S) eIV (e,

where

s
s24+—

T
a(s) =g 25:b(5)

1
"~ B2s+A%
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i and ¢, are constants. Since 7'(x,s) must be bounded as
X — *o00 so that ¢; = ¢, = 0. To ensure the convergence of
the two integrals, let

_ R N I C) R
T(x,s) = 2LOO = OVal)y(£)de
1 b66) evyaw
+2LO oy (e
Therefore,

T(x,t) = L' [T(x,s)]

Al s

L] b(s) (e /aly)
5] L la@) ]W(i)di-

T(x,t) can be obtained by the inverse Laplace transformation

! [ b(s)
a(s)

e—(f—X)\/a(S)] et

2 02
2A2_B_) ,L__(s i)
X e( 0

The integrant in this equation can be obtained either analyti-
cally or numerically.

In the three-dimensional case, for another example, the
Wy (M, 1) is the solution of

1or 9T 2 0 3

—ortgm = AT+ B AT, R % (0,+00)
oT

T(M7O):07 E(Mao):l//(M)

(3.118)

Its triple Fourier transformation yields

2 —~ —~ ~
%T(m, 1) + <Tlo +B2m2) g T(o,1) + A0’ T(0,1) =0

1(0,0) =0, 70,0 = (o),
(3.119)

where f’((o, t) denotes the Fourier transformation of
T(x,y,z,t) with respect to the three spatial variables;
® = o1i + w2 + wsk. Let a(®)*if(o®) be the characteristic
roots of the equation of (3.119). Then

i(,1) = V[A(w) cos f(@)t + B(w)sinf(w)],

where A(®) and B(®) are functions of @ to be determined.
Applying the initial conditions yields

A(0)=0,B(0)=21?)

(o)’

J. Appl. Phys. 109, 104702 (2011)

Thus,

e“@)lsinf(m)t.

The solution of (3.118) can be obtained through the inverse
Fourier transformation

uM,t) = — J” i, 1)elOmesn et oy, daydes.

)

Note that in the problem of (3.107), A?>=a/t, and
B? = atr /7,. For ordinary materials «, 7, and tr are very
small, so that B> < A% and B> < 1. At these points, we can
obtain an approximate analytical solution of (3.107) by using
the perturbation method with respect to B> and making use
of the solution of (3.107) at B> = 0. In the following, we
take the one-dimensional problem in Cartesian coordinates
as an example to illustrate this method.

For the case of B2 = ¢ < 1, one-dimensional Cauchy
problem of DPL conduction reads

1or 9T 0T T 1
wor Tar = g tegge R x(040)
T(x,0) =0, g(x,O):lp(x).
ot
(3.120)

Solving it by perturbation method relies on the solution of

2 2
lg ﬂ_ ZE; R1><(0,—|—oo)
T0 ot or? Ox? (3.121)
T(6,0) =0, T (x,0) = p).

It is a hyperbolic heat conduction problem, whose solution
can be obtained by, for example, Riemann method'®

1 1
= —e_% IO <
24 J,A, 241

where Ip(x) is the modified Bessel function of the first kind
and zeroth order. An approximate analytical solution of
(3.120) can be obtained by correcting 7'(x, 7) in (3.122) via a
polynomial with respect to . In particular, when ¥(x) is a
polynomial of x, such as

To(.x, l)

(Ar)> — u2> Y(u + x)du,
(3.122)

Y(x) = Py(x) = Zanx”.
n=0

The perturbation method can lead to the exact solution of
(3.120). Since elementary functions can normally be
approximated by Taylor polynomials, we focus our discus-
sion on the solution of (3.120) with a polynomial y(x).

With  (x) = Py(x) = 3 ,a,x", the solution of
(3.121) takes the form of
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To(x,1) = ! e%JAt - (A1)* — u?
Y o N\ 245, .

[ N

x Zan(u +x)"
L n=0
| 1

=3¢ J Iy <2A (Ar)? —u2>

(g

| =0 i—0

du

du. (3.123)

By defining
Gi(t) = JAr - (A1) — w2 \uldu, i=0,1,..,n
i - 0 2AT() ) — Yy Ly ey Iy

T(x,t) can be rewritten as

IN/2] p(20)
_ et les(3 P W,
TO(X’Z)_TOPN(X)(I ¢ )—’—ZAe <i1 (2i)! Gz,(f)>,

(3.124)

in which the properties of G;(¢) that when i is odd, G;(r) = 0,
and

+At

Golt) = J Io (b (Ar)? — u2>du - 2Aroeﬁ(1 - e#)

—At
have been used. [N/2] denotes the maximum positive integer
not larger than N /2. Equation (3.124) shows that the solution
is a sum of [N/2] 4+ I terms. All terms are in the variable-
separable form.

Let the solution of (3.120) with (x)

N n
Zn:O anX be

T(x,1)

:TO(x7t) +T, (X,Z)8+T2(X,l)82 4 +Tn(x7t)8n +eey
(3.125)

where T,(x,?) are functions to be determined. Substituting
Eq. (3.125) into (3.120) and comparing the coefficients of

e'(n=0, 1, 2,...) terms yields the problems of T,(x,t),
(n=0,1,2,..):
10T, Ty LPT,
S0, TR0 42770,
w o oe g R 3 (0+00)
Ty
To(x, O) =0, W(L 0) = PN(x)7
1o1, T, L0  O°T, .
war Tar N o Tamed R xOte)
ot
Ti(x,0) =0, —(x,0)=0
1()(, ) ) ot (xv ) )
101, 0T, 0T, &T,
= =A ;i R 0
wor | oe o Tage B (040)
orT
TQ(X,O) = 07 72‘2()‘.’ 0) =0
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To(x,¢) is given by Eq. (3.124), which is a N-th polynomial
of x

T (x,t) is the solution of f—contribution hyperbolic heat
conduction problem with f(x, r) being 3T, /dtdx>:'®

t 1 [ X+A(1—1)
Ty(x,t) = J War (Xt —1)dt = —J e_ﬁdfj

0 0rox2 | =1 2A 0 fo(tf‘c)
PTo(&,7)

x Iy by/A2 (1 —1)° — (x — 2>#d,

o[y — o7 - o) e

which is a (N — 2)-th polynomial of x. Similarly, T, (x,?) is a
(N — 2n)-th polynomial of x and T,(x,#) =0 at n = [N/2]
+1,[N/2] 4 2,.... Therefore, the analytical solution of
(3.120) with (x) = Py(x) = ZLO a,x" can be expressed as

T(x,1)

=To(x,t) + Ty (x,0)e+ T>(x, I)SZ + 4+ Ty (o, 1),
(3.1206)

Define an operator

1 t - X+A(1—1)
S:ﬂjoe Zfodrj ( \/A2 r—1) - x—f)z)

83
. OtOx?

g,
x=¢
=1
so that Ty =S(Ty), Tp =S(T1) =5*To), ... Tinj =
SIV/2(Ty). The solution of (3.120) can be further reduced to

T(x,1) + SN2 (1) emra,

(3.127)

=T+ S(To)e + S*(To)e” + - --

Therefore, the task of finding the solution T'(x, ) of problem
(3.120) reduces to that of applying the operator S to Ty(x, 7).
To(x,t) has the same form for both even N (N = 2m) and
odd N (N = 2m + 1). Therefore, T (x,¢) is also the same for
bothN =2mand N = 2m + 1,

T (x,1) =S(To)
1 Jt . JHA(tr) ( 5 5
=—| e >odr Iy bAJA2(t—1)" — (x— &)
2A A=) \/ =)
o m71P(2i+2)(£)
x [P'n(E)e o+ N —2lgn(1)|dé
l ZA; (2i)!
1 X+A(t—1)
=—/|e ZVOdTJ Io-P"y(&)e 0dé
ZAJ x—A(t—7) v ( )
1 . X+A(1—1) 1 n= IP(2i+2)(é)
"o d 1 NN i d
2A J o TJ&—A([ 7) o 2A Z (Zl)' i (T) é
=10P" v (x) {To +(to+t)e fo}

1= 1 P[(\/2i+2) (x) t e
SN W R G- 1)d
DT C

m— 2i+2
1 IP](VH- )(x) t

Fore e (1= )

1 m—2 P[(V25+2j+2)(x) tL
+mij; Wjoe 70 Goi(t—1)g2(1)dr,
i+j<m—1
(3.128)
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where g5i(1) = d[e”"/Gyi(x)] /dr. Ta(x,1), Ta(x,1), ...,
Tin/2(x, 1) can be obtained by reapplying the operator S to
uo. Otherwise, Tpy 2 (x,1) = SV2l(uy) can be also deter-
mined by the following approach.

Note that

SN2 (1y) = PV (g (e), (3.129)

where ¢(7) is a function to be determined. By introducing the

operator
1 [ A(t—1) d
A:—J e 2fner Io(b\/Az(t—r)z—u2>— du
2A 0 —A(1—1) dt 1=t
t
_ixd
=1 J e o—| dr,

0 dr t=1

we have

q(t) = AN [‘co<1 - eié)}

Il
a
(=}
o -~
/N
—
[a\)
2(7
N—
—
=
\“‘E
D
S
| |
o -
SN—
Q
|
|~
N
Py

In applications, the order of polynomial Py(x) is normally
not larger than 5 so that [N /2] < 2. Therefore, the determina-
tion of T(x,t) by applying the operator S is not as compli-
cated as it looks.

For N = 5, for example, Ty(x, ¢) is given by Eq. (3.124):

To(x, 1) = oPs(x) (1 - e—%)

T, = S(Ty) can be obtained by Eq. (3.128), whose last

term vanishes:
|

10T O*T T

% r v/ r
Ty T0 — TO+[+2'7T0++W e 0.

J. Appl. Phys. 109, 104702 (2011)

T, (X, I) = S(T(])

1 PP )

= ‘L'()P//S(x) {To + (70 + [)e_%o] + T

e 1 pY
X L e G, (t — 1)dt + 2 Sz(x)

4 —
X J rogz(r)(l - eiﬁ>dr.

0

T, = S*(T)) can be directly written out by Eq. (3.129):

12 L
T, = S*(Ty) = ‘C%Pg4) (x) {ro - <’L’0 +t+ —)e fo].
2‘[0
Finally, T(x,t) = To + S(To)e + S*(To)e*. The result for
N = 4 has the same form as that for N = 5 by only replacing
Ps(x) with Py (x).
For N = 3 (P3(x) = ap + ai1x + axx* + azx®),
. f)//3 (.X)

_ 1
To(x,1) = TOP3(X)(1 —e ) 55 S Ga).

T, = S(To) can be obtained by Eq. (3.129):
Ty = S(To) = 1oP5(x) {‘L’O — (10 + t)e_%]
= 19(2az + 6a3x) [‘L’o — (t0 + t)efﬂ ,

so that T(x,t) = To + S(Ty)e. Similarly, the result for N =2
can be readily obtained by using a3 = 0. It shows that the
effect of 9°T/(dtOx?)-term is x-independent for the case of
P>(x) and increases to 2a,13 as t — oc.

ForN =1 (Pi(x) = ap + a1x),

T(x,t) = To(x, 1) = to(ao + a1x) (1 - e_$>.

This shows that the 33T /(0t0x*)-term has no effect on the
solution of an initial value of type Py (x).

By the solution structure Theorems 9 and 10 [Egs.
(3.109) and (3.112)], the solution of the problem

T
—— 4+ —— =A"——+B——+P(x1); R x(0
wor T A an B giga TP REx(0o0) (3.130)
or ’
T(x,0) = Pp(x), B (x,0) = P,(x)
I
is of the solutions for two- and three-dimensional Cauchy prob-
lems of hyperbolic heat conduction.
1 0
Tx,t)=—4+——B*— t
(x, f) (To + ot 8)(2) me(x, ) + an(x, t)
! IV. BIOHEAT TRANSPORT IN SKIN TISSUE AND
|, Wee bt = 7)dr, (3.131) " DURING MAGNETIC HYPERTHERMIA

where P,,(x), P,(x), and Py, g(x, t) are m-, n-, and k-th polyno-
mials of x and Py, (x,7) = > i ai()x'. Py, = Py (x, 7).

The perturbation method can be similarly applied for
two- and three-dimensional Cauchy problems, by taking use
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The complicated microscopic physics in biological tis-
sues leads to non-Fourier behavior of heat conduction.
This has been experimentally observed and has been
attracting increasingly more attention.”’*> Our rigorous
development of the macroscopic heat transport model also
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supports a dual-phase-lagging bio-heat model in biological
tissues. Here we study the bioheat transport in skin and
during magnetic hyperthermia by using solution structure
theorems developed in Sec. III to solve DPL bioheat
model. The solutions of the corresponding Pennes model
and thermal wave model (TWMBT) are also analytically
obtained as special cases of DPL model at 7, = 77 = 0 and
1, > 17 = 0, respectively, and compared with the DPL
bioheat model.

A. Skin bioheat transport

Several thermal therapies and physiological functions
involve heat transport in skin tissue. Successful thermal
treatments and deep understanding of physiological proc-
esses require an accurate prediction of the response of skin
tissue to external thermal condition. The solution structure
theorems discussed in Sec. III is capable of facilitating this
prediction considerably.

For the sake of illustration, consider the same problem
as described by Xu er al.:*' the skin is initially in equilibrium
with environmental air where natural convection boundary
condition is applicable (T, = 25°C, hg = 7W/(m? - K)). At
t = 0, the skin surface begins to contact with a hot source of
constant temperature 77 = 100 °C for a period of 15 s; after
removing the hot source, the skin is then cooled by a cold
source at constant temperature 7, = 0 °C for another period
of 30 s. In Ref. 21, the skin is modeled as a four-layer struc-
ture so that different layers can have different thermophysi-
cal properties. Temperature profiles are obtained by
employing numerical approaches to solve three kinds of con-
tinuum models: Pennes model, thermal wave model, and
DPL models of different orders. While predictions of the
three different-order DPL models are shown to be close from
each other, they are significantly distinct from those of
Pennes model and thermal wave model. In this section, we
solve Pennes model, thermal wave model and first-order
DPL model analytically by regarding the skin as a single ho-
mogeneous layer and assuming constant properties in the
skin. Temperature profiles are obtained under two sets of
skin properties, and compared with the numerical predictions
for multi-layer structure to show the effectiveness of the
one-layer approximation.

The governing equations, boundary conditions, and ini-
tial conditions are given by:

Pennes model:

T T  pyepwp On .

— = T, — T(x,0)] + =2 4.1
o ot e [ (x )Hpc 4.1)
Thermal wave model:
1 ppepwp\ OT T  a OPT 1 pycpy
-+ T e M b
T4 pc ot or T, 0x* 1, pc
1 On
< [T~ Tl + 22 42)
T4 pC

J. Appl. Phys. 109, 104702 (2011)

DPL model:
1 or T o’T o (0T
<+phcbwb> or or_aol  jwd (2)
74 pc ot ot T, OX T, Ot \ Ox
1
e (PR L))
T, pc
10,
L1l (4.3)
T4 pC
Boundary conditions:
T(0,7) =T, (heating process);
T(0,1) = T, (cooling process);
or
= =0 44
o (4.4)
Initial conditions:
d*To | pycron On
- T,—T, =m0
v T " [ o(x)] + e
T(x,0) =T, : dT,
O =T o) i, — Togo)
X =0
To(l) =T.
or|
ot|_y

(4.5)

In Egs. (4.1)—(4.5), T is the temperature, x denotes the dis-
tance to the skin surface. «, k, p, and c are thermal diffu-
sivity, thermal conductivity, density, and specific heat of
tissue, respectively; p,, ¢p, andw;, are density, specific
heat, and perfusion rate of blood, respectively; T, is tempera-
ture of the arterial blood supply; Q,, is the metabolic heat
generation; 7, andtr are the phase lags of heat flux and tem-
perature gradient of tissue, respectively. Ty(x) denotes the
initial temperature distribution in the tissue, which satisfies
the steady-state governing equations of T, representing the
balance among heat conduction, blood perfusion, metabolic
heat generation, and heat loss through natural convection.
ho and T, are convective heat transfer coefficient for natural
convection and environment temperature, respectively. T,
and [ are the deep body temperature and skin depth of inter-
est. [ should be large enough so that the adiabatic boundary
condition at x = / is applicable.

Solving of the continuum models requires reliable data
about the macroscale properties of the continuum. Their
experimental data at different layers in skin are listed in Ta-
ble I11.%' Based on these data, Xu et al.®! also recommended
the overall skin properties when the skin is treated as single-
layer structure (Set 1 in Table III). We will solve the three
models by using both the suggested property values in Xu
et al.*' and another set of values (Set 2 in Table III). Detailed
solution procedure is demonstrated in the following for the
DPL model (4.3), while solutions of the other two can be
similarly obtained at T, = 77 =0 or 7, > 17 = 0.
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TABLE III. Thermophysical properties of different layers in skin and blood.

J. Appl. Phys. 109, 104702 (2011)

Stratum

corneum Epidermis Dermis Fat Overall Overall
Parameters (0.01 mm) (0.08 mm) (1.5 mm) (4.4 mm) Set 12! Set 2
Thermal conductivity, £ (W/m K) 0.235 0.235 0.445 0.185 0.235 0.35
Density, p (kg/m®) 1500 1190 1116 971 1190 1100
Specific heat, ¢ (J/kg K) 3600 3600 3300 2700 3600 3200
Metabolic heat generation, 0, (W/m?) 368.1 368.1 368.1 368.3 368.1 368.1
Blood density, p,, (kg/ m?) 1060
Blood specific heat, ¢; (J/kg K) 3770
Arterial blood temperature, 7,(°C) 37
Core body temperature, 7.(°C) 37
Blood perfusion rate, wy, (s™) 0.001

(i) Heating process: 0 < t < 15s. . hoeB/(T, — Ag) — (ho — kBo)(T. — Ag) 4.6)
2 = .

By solving (4.5), we can obtain the initial temperature
distribution Ty(x) at t = Os:

To(x) = Ag + ¢16” + coe 7P,
Ag =Ty + , Bo

PprCpWh
PrChDp V. k7

(h() + kBo)(TC — A()) — /’loe_Bol(Te — Ao)
CBU[(/’l() + kBo) — G_Bol(ho — kBo) ’

i _ PrCr®p
T4 pc

where

Om

00 56

o or

0(0,1) = [Ty — To(0)]e”"#
O(x,0)=0, —| =0.
w0 =0, ot |—
To have a homogeneous boundary condition, let
O(x,1) = @ (x,1) + O (x, 1), where O (x,1) = (1 _ilc)gl(t).

Substituting it into Eq. (4.7), we have the mixed initial-
1 2 2
10 Ot or ox? ot

boundary problem for ® (x, ¢):
0’0,
Ox?
®1(07 t) = ®1(17 I) =0

©1(x,0) = =O2(x,0) = (5 — 1)1(0) = 0(x)

>+f(x,t)

00, 00,

—_— = —_—— — l—1 / 0 e

I I R PR ZC)

(4.8)
where
1 (1 B Pbewb>7 A2 — a(l _ PpChp TT>7
To Tq pc Tq pc Tq
1

2 _ T _(r_ L "
B oo, = ((-1)[o60+80) @9
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<1
=l ——
Tq

=g (1), ©(,1)=0

eBUl(/’lo + kBo) — efBUl(ho — kB())

To remove the T(x, 1)— term in the source term of (4.3), con-
sider a function transformation,

pb”h‘”hx

O(x, 1) = [T(x,1) — To(x)]e »

so that we obtain the governing equation regarding ©(x, t),

7o
Ox?

9’0

Ox?

TTQ

a_
7, Ot

PpCrWp T1
pc 1y
“4.7)

We can readily solve the problem (4.8) by following the pro-
cedure in Sec. III.

By Eq. (3.15) and Table II, the solution of y/(x)— con-
tribution problem at f(x,f) = ¢(x) =0 can be readily
written

> nmx
Wy (x, 1) = E bne™'sinf, ¢ - sinT
n=1

L (4.10)
i [0 )
w3
pg o) [ (e

1/19, A%, and B? are given in (4.9).
According to Theorem 1, the solution of the ¢(x)-contri-
bution problem is
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<i+gt>w(,,(x t) + B W ()2, ()

70
=— E bre*'sinfi, 1 - sin
T0 /
.y X
+ E be* (oc,,sm[f t+ B cospf, )smT

B? ( ) bre™! £ sin X
+ Z sinf3,, sml

< [1
= Z —+ay, +Bz( ) bie*'sinf,z - sin 2%
T0 l l

n=1
* O’n
+ Z B b,e™ cos Bt - sin —l

n=1

) . nmx
( o,sinf,t + f cos ﬁnt) bie™' sin -

I
M

4.11)
where

L2 X . nmx
b, = EJOgI(O) (7— 1) sdex.

According to Theorem 2, the solution of the f{x, t) contribu-

tion problem reads
|

100" 9’0
R + JR—
19 Of or?
0*e* 0 (0*O° 1
= A? B> — —
e b &<a8>+%{“
@* (0 ) [Tz T (0)} epbﬂlz by
0" (x,0) =0, % =0
where T (x) = T(x, 15). Let

m@nzwwn—@@gzwwn—o—%&@

The problem regarding ©7(x, t) is thus

100 00 , 0?0 , 0 (0O .

woar Tar N e T e ) T

07(0,71) =07(l,1)=0

* _(*_

01(,0) = (7-1)(0) = ¢*(x

007 X , o

7{20 = (7— 1)82(0) =y (x)

(4.15)

where

L+ g"2<r>]

1 d2 PpCprWDp Qm bbb,
- T, — T m |
+’L'q{ dx o pc [ o] + pc ¢’
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G(x, &t —1)f (& t)drdé,  (4.12)

t [t
J Wﬂ (x.,tf‘r)df = J J
0 0Jo

where

o8
Z (= s1n¢sm$smﬂ (t—1).

G(x, &t —

Therefore, the solution of the problem (4.8) has the form of

_ 1 90 2
O (x,1) =Wy (x,1) + (To + 6t> Wy(x,t) + B W(ﬂ_f)zw(x, 1)

t
+ J W)‘;(x,t—r)d'f- 4.13)
0

We can further obtain @(x,t) and T(x,7) by O(x,t) =
O (x,1) + Oy(x,1) and  T(x,t) = O(x,t)e Pcoenx/(pe) -
To(x), respectively.

(ii) Cooling process: 15 <t < 45 s.

The initial temperature for the cooling process should be
the value of T(x,7) at t = 15 s, rather than the Ty(x) satisfy-

ing (4.5). Thus, the problem of O*(x,t) = [T(x,t)—
T} (x)]e=Prevr/(P¢) has the form of:
TE; PpCprDp Qm Pbbh,

N e N A 5 Zm

a2 oc [ o] + oS (4.14)

=g(), O (L,1)=0

I

Here g,(7) is defined in (4.14). The solution of problem (4.15)
has the same structure as (4.13) by replacing ¥(x),
o(x), and f(x,t) with ¥*(x), ¢*(x), and f*(x,t), respec-
tively. ®* (x, r) and T'(x, ) can also be consequently obtained.
Figures 2 and 3 illustrate the temperature variation with
time at the epidermis-dermis (ED) interface and dermis-fat (DF)
interface, respectively. Figures 4 and 5 show the temperature
profiles in the skin at the end of heating process ( =15 s) and
the end of cooling process (t = 45 s), respectively. The temper-
ature profiles calculated from different bioheat models deviate
significantly from each other. In particular, wave-front phenom-
enon is obvious for the thermal wave model. The comparison in
Figs. 3-5 between the analytical solutions under two sets of pa-
rameters and the numerical solutions for multi-layer structure
clearly shows that by carefully choosing values of skin thermo-
physical parameters, single-layer model is capable of predicting
accurately those from multi-layer models. Note also that analyt-
ical results are much less time-consuming and more accurate
than numerical ones (evident from the results of TWMBT).
Figure 6 shows the temperature variation with time at
DF interface for different values of 7, in thermal wave model.
For a larger value of 7,, a longer time is needed for the pre-
diction of thermal wave model converges into that of the
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100

Analytical, single-layer
e - - - - Numerical, multi-layer [21]
1

Pennes model

Thermal wave model

DPL model

Temperature, T (°C)

Time, ¢ (s)

FIG. 2. (Color online) Temperature profiles at the ED interface.

Pennes model. When 7, = 1 s, for example, the prediction of
thermal wave model begins to agree with that of Pennes
model after around 5 s; when 1, = 3 s, the two predictions
become very close after around 10 s. When 7, = 10 s, how-
ever, large discrepancy still exists between the two predic-
tions even after 30 s. The temperature variation with 77 is
illustrated in Fig. 7 at DF interface and with 7, = 10 s, show-
ing that t7 smoothes the t,— induced wave front and leads to
a non-Fourier diffusionlike behavior of the skin temperature.

B. Magnetic hyperthermia

Magnetic hyperthermia therapy is very promising for
treating some kinds of cancer, during which the temperature of
cancerous cells is elevated above at least 42°C and maintains
for approximately 30 mins by importing magnetic nanopar-
ticles into the tumor tissue and applying an alternating mag-
netic field.?*°%°! Highly selective heating of the cancerous
tissue becomes achievable even for deep tumors in the body
due to: (i) the possibility of selective concentration of

Temperature, T (°C)
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FIG. 3. (Color online) Temperature profiles at the DF interface.
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FIG. 4. (Color online) Temperature profiles in the skin at the end of heating
process t=15s.

magnetic nanoparticles in the tumor; (ii) high capability of
magnetic particles to produce heat under the applied magnetic
field; and (iii) the transparency of human tissues to magnetic
fields.®® To ensure that the effective treatment temperature
(> 42°C) localizes at the tumor region with little dissipation
to the surrounding healthy tissue, a reliable prediction of the
temperature profile during the magnetic hyperthermia therapy
is of vital importance, according to which the magnetic field
intensity and volume fraction of magnetic particles can be
properly defined. In this section, the temperature profile within
and around a spherical tumor is investigated as another exam-
ple of the application of the solution structure theorems.
Consider a spherical tumor with radius of 7p = 3 mm and
located deeply in the body. Magnetic nanoparticles are either
uniformly distributed in the tumor or superficially distributed
near the tumor surface. The former distribution can be
obtained by directly injecting magnetic nanofluids into the tu-
mor at a low rate.®"**? The latter, by the contrast, can be imple-
mented by injecting the magnetic nanofluids through the artery
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FIG. 5. (Color online) Temperature profiles in the skin at the end of cooling
process (=45 s).
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FIG. 6. (Color online) Temperature profiles at DF interface for different val-
ues of in thermal wave model.

supplying to the tumor with specific binders attached to the
surface of the nanoparticles.’’ By applying a magnetic field,
the nanoparticles can generate heat within the tumor serving as
an external supplied heat source. The governing equation,
boundary conditions, and initial conditions are given by:

Pennes model:

or 20T T\ = pycry On+ 0.
el el il T,—T(r, =m T xe
ot a(r or + 8r2> + pc [ (r )] + pc
(4.16)
Thermal wave model:
L peon\ O FT_x (207 T
Tq pc o 02 1, \ror 0o
LEO 1p 1)
T, pC
1 m e
4 1@nt Qe (4.17)
T,  pC
|
Lo (ot
T(r0) =T 2 0r d or
O =To0): 3 g 7
dr r=0 -
a - _y,
ot

Here r denotes the distance to the sphere center. R is the ra-
dius of region for calculation which is set to be 10 times of
the tumor’s radius to satisfy the adiabatic boundary condition
at r = Ry. The thermophysical properties of tumor and sur-
rounding tissue are assumed to be the same and given in
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FIG. 7. (Color online) Temperature profiles at DF interface for different val-
ues of in the DPL model.

DPL model:
1 wop\ OT  O*T o (20T  O°T
<_+Pb6b h)_ _2:_<__+_2) ol
74 pc ot 0 1, \ror Or T4
0 (20T O°T 1 ppcrwp
Xa(m*w) T pe
1 m e
[Ty —T(r,1)] +7%
Ty pPC
(4.18)
Boundary conditions:
oT oT
il = — =0 4.19
or r=0 ’ or r=Ry ( )
Initial conditions:
“p D,
)} O gy + 22 <0,
pc pc
dTy
- — O
dr |, (4.20)

Table TV.°! For the thermal wave model, 7, = 16s; for the
DPL model, t, = 16sandty = 10s. Again, the Pennes model
and thermal wave model can be regarded as the two special
cases of the DPL model at 7, = 17 = 0 and 7, > 17 = 0, so
that we can focus our discussion on the solution of Eq. (4.18).
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By solving the problem in (4.20), we can obtain the ini-
tial constant temperature To(r) =T, + Om/(ppcprop). To
have a T(r, t)-independent source term in (4.18), introduce a

function transformation:
|

100, #0_ ,10

00t 0 T r2or

00

E . = 07 @(R()J) =

o0 =0, 22| ~o,
ot |,_o

Lo (Lo o (1 ppcropTr
T \Tg pc )’ Ty pc 14)’
B =l f(r1)= 12 S

Tq Ty pC

According to the solution structure theorem, once we obtain
the solution Wy, (r, r) of the problem:

100 PO ,10(,00\ ,9[10/(,00
wor e A Aar ( E) B a[m(’ a_>]

E’.:OZO, @(RO,I)ZO
00
0(r,0)=0, — =y(r).

ot |,_

(4.22)
The solution of the problem (4.21) can be readily written by
f(; W (r,t — 1)dr.
By separating ©O(r, 1) as R(r)I'(¢) and substituting it into
Eq. (4.22), we have
1 1 /
() + - T'(2)

RO IR0
A2D(f) +B2T'(1) 7

R(r) ’

where —/ is the separation constant. The governing model
for R(r) is thus:

2
R'"+ZR +JR=0

.
R (4.23)
o, =0 RRo)=0.

TABLE IV. Thermophysical properties of the tissue and blood.

Parameters Values
Thermal conductivity, k£ (W/m K) 0.5
Density, p (kg/m?) 1000
Specific heat, ¢ (J/kg K) 3800
Blood density, p, (kg/m®) 1000
Blood specific heat, ¢, (J/kg K) 3800
Metabolic heat generation, Q,, (W/m?) 700
Arterial blood temperature, 7, (°C) 37
Blood perfusion rate, @, (s7hH 0.0005

00 10 [,00
<,~2 8_1> B ot LZ or < or )} 10
0
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PbChOh .

O(r,t) = [T(r,t) — To(r)]e » .

The problem regarding @ (r, 7) thus reads:

4.21)

In Sec. IIT A 4, we have shown that the solution of (4.23) can
be written by a spherlcal Bessel function jy(4, 12 r), where
= (W12 /r )2, (1/2) are positive zero-points of J; 5 (x),
n=1, 2 3,.

For the present problem, since A = (1 /70 +iﬁBz)2
— 47242 > 0, the solution of @(r, ) can be written as

@(I‘, t) = Z (aﬂerlt + bnerZI)jO (MSII/Z)/rO . r)a
n=1

where
1/1 1 /(1 g
Fo=—=—+ B> |-/ —+ 2.B2) —41,A2.
’ 2 T0 2 To
The initial conditions ®(r,0) =0, %? =y(r) lead to
a,+b,=0
R
P - J Ulﬁ( o (u,(f/ 2/ ro~r)r2dr
(ri—r2)My

Ro
whereM,,—J JO< (1/2) /7. r) Zdr = 1/2)J3/2( 1/2)).
;4

Therefore, the solution of the problem (4.22) is

- 1

x rldr(e"’ — ’2’)]0( (72) /1 - 1)

Then the solution of the original problem (4.21) can be writ-
ten as

J(:Wﬂ =) i (ri—r2)M Lrof(f,r)

n=1 0

o (1172 /"o-i)ézdé [e (-

1 & PbCh®h
E e pe ~oc T
‘quC 1’1 — r2

T)_ erz(tft)]d,[

n=1 "
X [e"' (=) —e”(’_f)}dr XJ Q.(r)
0
X jo(u\?) /o - E)EdEjo (1P Jro-1).
(4.24)
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FIG. 8. (Color online) Temperature profiles under the uniform distribution
of magnetic nanoparticles.

For the uniform distribution of magnetic particles,

J95x10°W/m?, r<rg
Qe(r) - {0, ro <r < Ry.

For the superficial distribution of magnetic particles,

0.(r) =52 5(r — ro)

472
gp = 0.12W,

where J(x) represents the Dirac Delta function.

The temperature profiles as a function of r from three
models are compared in Fig. 8 under the uniform distribution
of magnetic nanoparticles. Obvious discrepancy appears at
the early stage of hyperthermia treatment, e.g., and ¢ = 40 s,
due to the lagging effects of 7, and 77. It is interesting to
note that the temperature at the tumor center from thermal
wave model is lower than that from Pennes model at
t = 20 s but becomes higher at t = 40 s. When the time scale
is much larger than that of 7, and 77, temperature profiles
from all the three models are almost the same. Note also that
it may need a long time (around 25 min in this case) for the
tumor surface temperature is over 42°C from the instant
when the tumor center temperature reaches 42 °C.

Figure 9 shows the temperature variation with r from
three models under the superficial distribution of magnetic
nanoparticles. At the early stage, large discrepancy exists
among the three models. In particular, wave front is obvious
for the thermal wave model. When the time scale is one
order longer than that of 7, and 77, temperature profiles from
the three models become very close. The temperatures at dif-
ferent positions within the tumor can exceed 42 °C at almost
the same time (¢ = 360 s in this case), which is advantageous
than the uniform distribution of magnetic nanoparticles.

Besides the parameters examined here, blood perfusion
rate w;, could also have a significant effect on the tempera-
ture profiles within and surrounding the tumor. In real appli-
cations, the magnetic field intensity and amount of applied

J. Appl. Phys. 109, 104702 (2011)
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FIG. 9. (Color online) Temperature profiles under the superficial distribu-
tion of magnetic nanoparticles.

nanoparticles should be carefully adjusted to ensure effec-
tive-treatment temperature in the tumor and safe temperature
in the healthy tissue, no matter which kind of nanoparticle
distribution is applied.

V. CONCLUDING REMARKS

Macroscale bioheat transport models have been devel-
oped either by the mixture theory of continuum mechanics
or by the porous-media theory. In the former, the global bal-
ance equations are scaled down; the required constitutive
relations for heat flux are supplied directly at macroscale by
the Fourier’s law, the Cattaneo-Vernotte theory or the DPL
relation. The thermal models developed in this approach
contain, for example, Pennes model, Wulff model, Klinger
model, Chen and Holmes model, thermal wave bioheat
model, and DPL bioheat model. In the latter, both conserva-
tion and constitutive equations are introduced at the micro-
scale. The method of volume averaging is then used to scale
up the microscale equations and hence obtain the macroscale
model. In order to form a closed system, the closure model
must be provided for the unclosed terms that represent the
microscale effect in macroscale field equations. Compared
with the mixture theory of continuum mechanics, the po-
rous-media approach is more powerful in offering connec-
tions between microscale and macroscale properties and
accurately describing the rich blood-tissue interaction in bio-
logical tissues.

By using the porous-media approach, a general bioheat
transport model is developed with the required closure pro-
vided. The model shows that both blood and tissue tempera-
tures satisfy the DPL energy equations at macroscale. Due to
the coupled conduction between blood and tissue, thermal
waves and possible resonance may appear in bioheat trans-
port. The blood-tissue interaction leads to very rich effects of
the interfacial convective heat transfer, the blood velocity,
the perfusion, and the metabolic reaction on blood and tissue
macroscale temperature fields. Examples include: (i) the
spreading of tissue metabolic effect into the blood DPL
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bioheat equation, (ii) the appearance of the convection term
in the tissue DPL bioheat equation due to the blood velocity,
and (iii) the appearance of sophisticated heat source terms in
energy equations for blood and tissue temperatures.

DPL bioheat equations enjoy a very beautiful solution
structure under linear boundary conditions: inter-expressible
contributions of the initial temperature distribution, the
source term and the initial rate of the change of temperature.
Eleven solution structure theorems are developed in Carte-
sian, polar, cylindrical, and spherical coordinates for
expressing solutions due to initial temperature distribution
and source term by solutions due to the initial rate of temper-
ature changes. They form a powerful tool for effectively
resolving the DPL bioheat equations. This has been verified
by the study of bioheat transport in skin tissue and during
magnetic hyperthermia which has also revealed characteris-
tics of different bioheat models and exemplified rich features
of bioheat transport processes.
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